PC915

■ Features

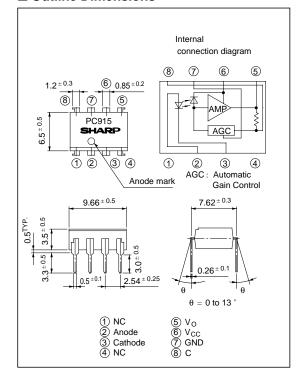
1. Wide band linear output type
(Frequency band width: TYP. 10Hz
to 8MHz.)

2. Fluctuation free stable output(Output fluctuation: TYP. ± 5% at within operating temperature 50 000hr)

3. High isolation voltage (V_{iso}: 5 000V_{rms})

4. Standard dual-in-line package

5. Recognized by UL, file No, E64380


■ Applications

1. Video signal insulation in TV

2. Insulation amplifier in measuring instrument and FA equipment

Wide Band Linear Output Type OPIC Photocoupler

■ Outline Dimensions

* "OPIC" (Optical IC) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip.

■ Absolute Maximum Ratings

 $(Ta = 25^{\circ}C)$

	Parameter	Symbol	Rating	Unit
	Forward current	I_F	25	mA
Input	Reverse voltage	V _R	6	V
	Power dissipation	P	45	mW
	Supply voltage	V _{CC}	- 0.5 to + 13	V
Output	Output power dissipation	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	250	mW
	Output current	Io	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	mA
	*1Isolation voltage	V iso	5 000	V rms
	Operating temperature	T opr	- 25 to + 85	°C
	Storage temperature	T stg	- 55 to + 125	°C
	*2Soldering temperature	T sol	260	°C

^{*1 40} to 60% RH, AC for 1 minute

^{*2} For 10 seconds

■ Electro-optical Characteristics

(Unless otherwise spcified, $Ta = 25^{\circ}C$)

		Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	Fig.
Input	Forward voltage		V_F	$I_F = 10mA$	-	1.6	1.8	V	1
	Reverse voltage		I_R	$V_R = 5V$	-	-	10	μΑ	-
	Terminal capacitance		Ct	V = 0, $f = 1MHz$	-	60	250	pF	-
Output	Supply current		I_{CC}	$I_F = 10mA$	-	9	16	mA	1
	DC output voltage		V _{ODC}	$I_F = 10mA$	4	6	8	V	1
	Output noise voltage		V ono	$\begin{split} I_F &= 10 \text{mA}, \\ Band \ width &= \\ 100 \text{Hz} \ \text{to} \ 4.2 \text{MHz} \end{split}$	-	4	-	mV _{rms}	1
	AC output voltage		V OAC	$R_E = 230\Omega$	0.8	1.0	1.2	V_{P-P}	2
Transfer charac- teristics	AC output voltage	*1 Temperature characteristics	ΔV_{OAC-1}	$R_E = 230 \Omega$, $Ta = 10 \text{ to } 70^{\circ}\text{C}$	-	± 3	-	%	2
	fluctuation	*2 Forward current characteristics	ΔV OAC-2	$R_E = 230 \text{ to } 460 \Omega$	-	± 3	-	%	2
	*3 Cut-off frequency	High frequency	f _{CH}	$R_E = 230 \Omega$	6	8	-	MHz	2
		Low frequency	fcL	$R_E = 230 \Omega$	-	10	20	Hz	2
	Differential gain		DG		-	+ 3	-	%	3
	Differential phase		DP		-	- 3	-	۰	3
	Isolation resistance		R _{ISO}	DC500V, 40 to 60% RH	5 x 10 ¹⁰	1 x 10 ¹¹	-	Ω	-
	Floating capacitance		C_{f}	V = 0, $f = 1MHz$	-	0.6	5	pF	

^{*1} Fluctuation ratio of V_{OAC} at Ta = - 10 to 70°C on the basis of V_{OAC} at Ta = 25°C

■ Recommended Operating Conditions

	Parameter	Symbol	MIN.	MAX.	Unit
Input	Forward bias current	I_{FB}	8	15	mA
	Supply voltage	V _{CC}	8	13	V
	AC output voltage	V OAC	-	4	V _{P-P}
Output	Output current	Io	- 0.6	+ 0.2	mA
	C terminal capacitance	Cc	10	-	μF

^{*2} Fluctuation ratio of V_{OAC} at R_E = 230 to 460 Ω on the basis of V_{OAC} at R_E = 230 Ω

^{*3} Frequency of V_{IN} when V_{OAC} falls by 3dB on the basis of V_{OAC} when frequency of V_{IN} in Fig. 2 is 100kHz.

■ Test Circuit

Fig.1

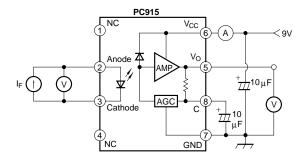
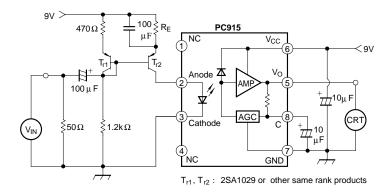
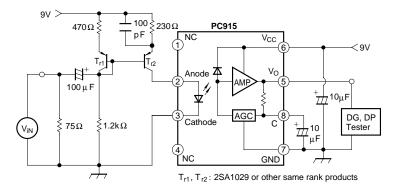



Fig. 2


V_{IN} Waveform

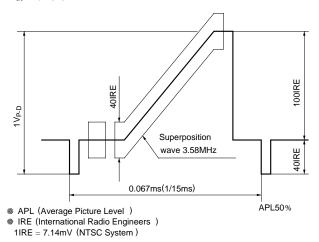

(Frequency) 15kHz at measuring V $_{OAC},~\Delta V_{OAC-1}$ and $~\Delta V_{OAC-2}$ and shall be swept at measuring f $_{CH}$ and f $_{CL}.$

Fig. 3

VIN Waveform

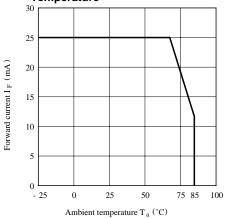


Fig. 5 Power Dissipation vs. Ambient Temperature

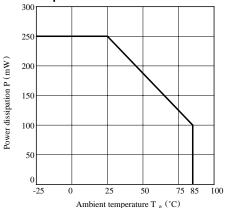
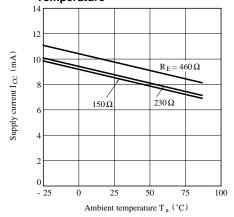



Fig. 7 Supply Current vs. Ambient Temperature

Test Circuit of Supply Current

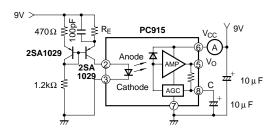


Fig. 6 Forward Current vs. Forward Voltage

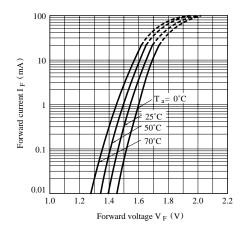
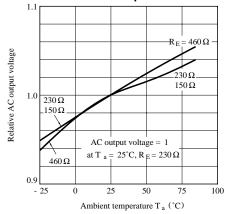
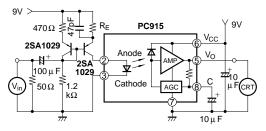




Fig. 8-a Relative AC Output Voltage 1 vs. Ambient Temperature

Test Circuit of Relative AC Output Voltage1 vs. Ambient Temperatue

Vin Input Waveform

Fig. 8-b Relative AC Output Voltage 2 vs. Freguency (1)

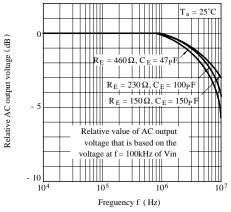


Fig. 8-c Relative AC Output Voltage 2 vs. Freguency (2)

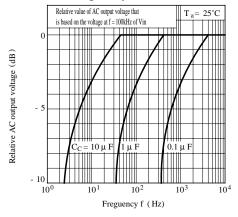
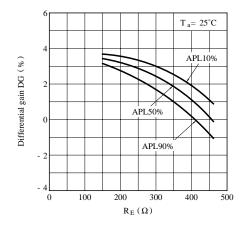
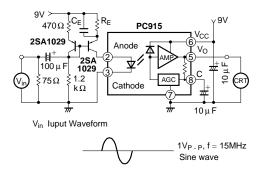
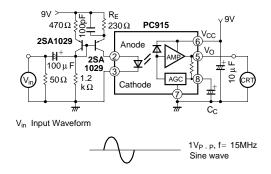
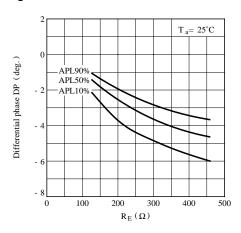
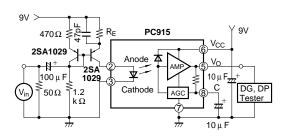
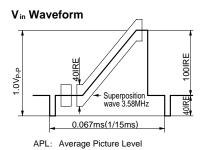




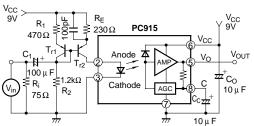
Fig. 9 Differential Gain vs. R E

Test Circuit of Relative AC Output Voltage 2 vs. Freguency (1)

Test Circuit of Relative AC Output Voltage 2 vs. Freguency (2)


Fig.10 Differential Phase vs. R E


SHARP

Test Circuit of Differential Gain vs. R E and Differential Phase vs. R E

■ Application Example

T_{r1}, T_{r2}: 2SA1029 or other same rank products

$V_{OUT} = 2.3 \frac{i_s}{I_B} = 2.3 \frac{V_{in}}{V_{CC}} V_E$

IB: DC flowed to infrared LED

is: AC flowed to infrared LED

V_E: Emitter voltage of T_{r2} (Between emitter and GND)

< Example of Circuit Setting >

(1) Set for Gain

Gain is represented by the following formula;

$$G = 2.3/(V_{CC}-V_{E})$$

When using on condition that Gain = 1, set V_{CC} - V_E on 2.3V. So that R_1 and R_2 is determined.

(2) Set for Input Resistance

Set Ri on output impedance (usually 75Ω) of a mounting equipment.

(3) Set for R_E

When there is no signal (input signal: 0), set I LED flowed into infrared LED on 10 mA.

(4) Set for Low Cut-off Frequency

Low cut-off frequency with C terminal capacitance, C $_{\rm C}$, is represented by the following formula;

$$f_C = 100/C_C(Hz)(C_C: \mu F \text{ value})$$

Then set Ci with input impedance of by-pass diode on as much value as possible on condition that $f_c>1/(2\pi \text{ CiR})[R=R_1R_2/(R_1+R_2)]$

■ Precautions for Use

- (1) It is recommended that a by-pass capacitor of more than $0.01 \,\mu$ F is added between V_{cc} and GND near the device in order to stabilize power supply line.
- (2) Handle this product the same as with other integrated circuits against static electricity.
- (3) As for other general cautions, refer to the chapter "Precautions for Use"

NOTICE

- •The circuit application examples in this publication are provided to explain representative applications of SHARP devices and are not intended to guarantee any circuit design or license any intellectual property rights. SHARP takes no responsibility for any problems related to any intellectual property right of a third party resulting from the use of SHARP's devices.
- •Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. SHARP reserves the right to make changes in the specifications, characteristics, data, materials, structure, and other contents described herein at any time without notice in order to improve design or reliability. Manufacturing locations are also subject to change without notice.
- Observe the following points when using any devices in this publication. SHARP takes no responsibility for damage caused by improper use of the devices which does not meet the conditions and absolute maximum ratings to be used specified in the relevant specification sheet nor meet the following conditions:
 - (i) The devices in this publication are designed for use in general electronic equipment designs such as:
 - Personal computers
 - Office automation equipment
- Telecommunication equipment [terminal]
- Test and measurement equipment
- Industrial control
- Audio visual equipment
- Consumer electronics
- (ii) Measures such as fail-safe function and redundant design should be taken to ensure reliability and safety when SHARP devices are used for or in connection with equipment that requires higher reliability such as:
- Transportation control and safety equipment (i.e., aircraft, trains, automobiles, etc.)
- Traffic signals
- Gas leakage sensor breakers
- Alarm equipment
- Various safety devices, etc.
- (iii) SHARP devices shall not be used for or in connection with equipment that requires an extremely high level of reliability and safety such as:
- Space applications
- Telecommunication equipment [trunk lines]
- Nuclear power control equipment
- Medical and other life support equipment (e.g., scuba).
- •Contact a SHARP representative in advance when intending to use SHARP devices for any "specific" applications other than those recommended by SHARP or when it is unclear which category mentioned above controls the intended use.
- •If the SHARP devices listed in this publication fall within the scope of strategic products described in the Foreign Exchange and Foreign Trade Control Law of Japan, it is necessary to obtain approval to export such SHARP devices.
- •This publication is the proprietary product of SHARP and is copyrighted, with all rights reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this publication may be made by a third party.
- Contact and consult with a SHARP representative if there are any questions about the contents of this
 publication.