
Designing With Cypress In-System Reprogrammable™
(ISR™) CPLDs for PC Cable Programming

Introduction
This application note presents how to design with the Cypress
In-System Reprogrammable™ (ISR™) families of complex
PLDs, the FLASH370i™ family and the Ultra37000™ family,
for programming from a PC with the ISR programming cable.
It is suggested that the following three application notes, “An
Introduction to In-System Reprogramming with the
Ultra37000,” “An Introduction to In-System Reprogramming
with the FLASH370i,” and “Understanding Bus-Hold—A
Feature of Cypress CPLDs,” be read along with this appli-
cation note to become familiar with the two product families.
This note discusses all issues related to programming and
reprogramming the devices in-system through the control of
a PC (i.e., while they are soldered onto a printed circuit
board). These issues include: an explanation of the ISR
programming cables and ISR connections required, using the
ISR programming pins for both functional logic and for
programming, and connecting ISR devices in a chain for
programming as well as proper functional operation. For the
purposes of this note the term “ISR devices” refers to both the
FLASH370i and the Ultra37000 devices. “Ultra37000” refers to
both Ultra37000 and Ultra37000V unless otherwise stated.
Throughout this application note, assume that the ISR
devices are programmed in system by means of the ISR
cable that connects the board to a PC. This ISR programming
cable is provided by Cypress, and the details of the cable and
the connector on the board to which it interfaces are
explained in detail in this application note. There are other
ways to program or reprogram the parts in-system as well,
and many of the topics covered and solutions shown in this
application note also apply to those methods.

ISR Programming Pins
The programming pins for the FLASH370i are named ISRen,
SDI, SDO, SMODE, and SCLK. For the Ultra37000 the same
pins are called JTAGen, TDI, TDO, TMS, and TCK respec-
tively. The reason for using the standard JTAG naming
convention for the Ultra37000 family is that these devices
support Boundary Scan testing and are compliant with the
IEEE 1149.1 (JTAG) standard. The programming interface for
the FLASH370i devices also complies with the standard,
however, these devices do not support boundary scan so the
names were changed from the standard JTAG naming
convention to prevent misleading the user. For the purposes
of this note the JTAG pin nomenclature is used.
All ISR devices can be cascaded into a single chain for
programming purposes so that one cable and one connector
can program all of the ISR devices on a board. The pins on
an ISR device used for programming are: JTAGen, TDI, TDO,
TMS, and TCK. Their names and functions are defined below.

JTAGen (ISRen) Enables the 4-pin JTAG Interface
This pin is present on all packages where the JTAG pins
share their functionality with IO pins. For the Ultra37000,
when this pin is at a TTL HIGH level the JTAG pin functionality
is selected. When it is at a TTL LOW level the IO pin function-
ality is selected. For the FLASH370i devices the JTAG pin
functionality is selected when it is at a supervoltage of 12.0V
and the IO pin functionality is selected when it is at a TTL level
between 0 and 5V. This functional difference in the JTAGen
pin for the two ISR device families is important and is
discussed further in this application note.

TDI (SDI) – Data Input
During programming, this pin provides the serial data input to
the device.

TDO (SDO) –Data Output
During programming, this pin provides the serial data output
from the device.

TCK (SCLK) – Clock
During programming, this pin is the clock input. TDI and TMS
are sampled on the rising edge of TCK, while TDO changes
following the falling edge of TCK.

TMS (SMODE) – Mode Control
During programming, this is the mode control input that
directs the Test Access Port (TAP) controller state machine
contained within the ISR interface on the device.
The ISR devices are programmed using a PC as shown in
Figure 1. The ISR programming cable connects the W or
parallel port of the PC, depending on which cable you have,
to a cable header on the board where the ISR devices are
soldered. The header on the board connects to the traces that
go to the JTAG pins on the ISR device itself. The ISR software
runs on the PC and drives these pins on the board, through
the cable, header, and traces, to program the devices with the
appropriate JEDEC files.

ISR Programming Cables
Table 1. ISR Cable Used for Programming

Cable Devices
ISRPCCABLE(rev 0.03) FLASH370i, Ultra37000,

(Ultra37000V with 5V supply)
UltraISRPCCABLE Ultra37000, Ultra37000V
C3ISRPCCABLE Ultra37000, Ultra37000V,

Quantum38K, Delta39K
USBISRPCCABLE Ultra37000, Ultra37000V,

Quantum38K, Delta39K
Cypress Semiconductor Corporation • 3901 North First Street • San Jose, CA 95134 • 408-943-2600
ISRAPPS2.05 August 22, 2003, rev. 0.A

Designing with Cypress ISR CPLDs for PC Cable Programming
There are three ISR cables available to program ISR devices.

Table 1 shows the three cables and their appropriate usage.
The ISRPCCABLE cable (ISRPCCABLE.03 — revision 0.03)
can be used to program the Flash370i and Ultra37000
devices. The Ultra37000V devices can also be programmed
with this cable, provided a 5V supply voltage is used to power
the cable instead of a 3.3V supply. 5V is present on the circuit
board if the Ultra37000 or FLASH370i devices are also present
along with Ultra37000V devices.
The UltraISRPCCABLE is used to program the Ultra37000
and Ultra37000V devices but not the FLASH370i devices. This
cable does not have a 5V to 12V DC/DC converter since the
Ultra37000 family does not require a supervoltage for
programming. The ISRPCCABLE has a DC/DC converter
built into it that receives 5V from the board and supplies the
12V programming voltage to the JTAGen pin. The ISRPC-
CABLE (revision 0.03 or greater) can be used to program the
Ultra37000 devices because the JTAGen pin is 12V tolerant.
The Ultra37000V devices are also 12V tolerant. This means
that the application of 12V on the JTAGen pin is equivalent to
placing a TTL HIGH value on the pin. To program these
devices the user can either use the ISRPCCABLE (revision
0.03 or greater) or use the UltraISRPCCABLE. The latter
solution is recommended if the user does not need to
program FLASH370i devices.
The C3ISRPCCABLE and USBISRPCCABLE add function-
ality by allowing Delta39K and Quantum38K CPLDs to be
programmed, but are unable to program the FLASH370i
devices. As the name suggests, the USBISRPCCABLE
connects to the host computer using a USB port.

Dimension of the Three ISR Cables
The ISRPCCABLE is a six-foot cable with one foot as a
detachable, flexible ribbon cable. The ribbon cable section is
connected to the 12V converter box at the end of a five-foot
cable. The UltraISRPCCABLE is simply a short one foot
ribbon cable with a small PC board mounted inside of the

connector. The C3ISRPCCABLE is an upgrade to the similar
UltraISRPCCABLE. The newest cable is the USBISRPC-
CABLE, which connects to the PC through a USB port. The
user may need a parallel port extension cable when using a
parallel cable since there may not be enough cable length
from the parallel port on the back of the PC to the circuit
board. Both cables plug into the female parallel port of the PC
or the female end of an extension cable for the
UltraISRPCCABLE. It is not recommended to extend the USB
cable.

Connecting the ISR Cables to the Circuit Board
To connect the cable to the system, a 10-pin, 2 × 5, boxed
header male connector is mounted on the board. The ISR
programming cable plugs into the boxed header. This boxed
header connector has a small opening in the box on one side
(the key) that allows the ISR programming cable to be
plugged in one way only. The pins are on 0.100” centers. The
length of each pin is 0.230”, and the pin cross-section is
0.025” x 0.025”. This boxed header connector is available as
a straight-pin connector and as a right-angle connector.
Additionally, an open header can be used. Part numbers for
two compatible connectors are:
• DIGI-KEY part # S2012-05-ND (straight-pin connector)
• DIGI-KEY part # S2112-05-ND (right-angle connector)

Both ISR programming cables provided by Cypress have a
female end which plugs into these connectors. The position
of the signal pins on the connector is shown in Figure 2. The
orientation of this figure is such that the pin 1 location is the
GND signal which is located directly below the arrow on the
female connector itself. The notch on the female connector is
located near the ISR* signal as shown. If the right-angle
connector is used make sure the notch of the cable faces up
so that it can be plugged into the boxed header.

Figure 1. ISR Programming Set-up

To Parallel
Port

To 10-pin Connector (J2)
On Board

ISR Programming Cable

Device 1
Device 2 J3J2

JP2 J1

To USB
or Parallel

Port
2

Designing with Cypress ISR CPLDs for PC Cable Programming
To program a single ISR device using the ISR programming
cable described here, route the JTAGen, TDI, TDO, TCK, and
TMS pins from the cable connector to the JTAGen, TDI, TDO,
TCK, and TMS pins of the ISR device, respectively. Multiple
devices can be programmed in a single ISR programming
chain which is explained later in this application note. For
multiple devices in the chain, the TDI and TDO pins are
connected in a serial chain such that the TDO of the first
device in the chain connects to the TDI of the next device in
the chain. The TDO of the last device in the chain then returns
back to the 10-pin header TDO pin.
In addition to these programming pins, there is an additional
signal available from the cable called ISR*. The purpose of
this signal is to allow the user to monitor when ISR operations
are in progress. If ISR* is a logic LOW, it indicates that
JTAGen is 5V or 12V and ISR operations, such as
programming, are in process on the devices on the board. If
ISR* is a logic HIGH, it indicates JTAGen is 0V and no ISR
operations are being performed. The ISR* pin is needed
when using the JTAG/IO pins in both ISR (JTAG) and
functional (IO) modes. It is used by on-board logic to
determine when the JTAG signals should be enabled and
other driving signals to the ISR device should be placed in the
high impedance state (three-stated). This is discussed in
detail later in this application note. The logic LOW and logic
HIGH levels on ISR* are 0 and VCC, respectively. When the
ISR cable is connected this signal is driven appropriately to a
HIGH or LOW level. When the cable is disconnected the ISR*
signal must be pulled up using a pull-up resistor to the VCC
pin of the ISR connector to indicate to the circuit board that
no ISR operation is in progress.
There are three other connection points on the cable and
cable header: VCC, GND, and NC. VCC connects to the VCC
plane on the board containing the ISR devices. It supplies 5V
to the DC/DC converter in the ISR cable. This is necessary
for the ISRPCCABLE to be able to generate the 12V voltage
level on JTAGen needed to program the FLASH370i devices.
It also supplies power to a buffer in the cable for all other
JTAG signals. On the UltraISRPCCABLE, USBISRPC-
CABLE, and C3ISRPCCABLE the VCC simply supplies power
to the buffer in the cable for the JTAG signals. GND provides
a common ground reference between the board and the ISR
programming cable. NC is a “no connect” pin and is not used.
For boards containing both 5V and 3.3V it is recommended
to connect the 5V to VCC header pin instead of the 3.3V.

Connecting the ISR Cable to the Board
Because the ISRPCCABLE provides a high voltage (12V) to
the device, it is recommended that the ISR cable be plugged
into the PC and the customer’s board before power is applied
to the board. (This is not as important for the

UltraISRPCCABLE, C3ISRPCCABLE, and USBISRPC-
CABLES cables since there is no 12V signal generated in
either cable.) Once the cable is connected, the user can
power up the board. This assures a normal slew rate on the
JTAGen pin for all possible conditions. It is also recom-
mended that the user run the ISR software after the cable is
plugged into the users board and the PC parallel port. This
allows the software to correctly set the ISR pins to their appro-
priate initialized state on the parallel port of the PC. This
applies to the USB cables as well. All of the ISR signals are
buffered in the ISR cables and are permanently enabled.

Single-/Dual-Function Programming Pins
The next portion of this note explains in detail how to use the
IO function on the JTAG/IO pins. To address this issue, we
categorize designs into three types: designs using devices
with single-function pins; designs using devices with
dual-function pins used in single-function mode; and designs
using devices with dual-function pins in dual-function mode.
The single-function/dual-function names refer to the four ISR
pins and whether they share their functionality with IO pins.
Single-function mode refers to the ISR pins functioning as
ISR pins only. Dual-function mode refers to the ISR pins
functioning in ISR mode during ISR operations as well as IO
mode when the device is operating normally in the board. The
three cases are explained further below. For a complete
listing of all single- and dual-function mode devices for all
members of the FLASH370i or Ultra37000 families see the
application notes “An Introduction to In-System Repro-
gramming (ISR) with the FLASH370i” or “An Introduction to
In-System Reprogramming (ISR) with the Ultra37000.” All
Delta39K and Quantum38K devices are single function.

Single-Function Pins/Single-Function Mode
Some of the ISR devices have pinout/package combinations
such that the pins used for programming are single-function
only; i.e., they are used as programming pins only. When the
device is operating (i.e., not being programmed) they are not
in use and are extra pins. Designing with these devices
simply requires a direct connection from the device ISR pins
to the pins on the ISR programming cable connector for full
access to in-system reprogramming.

Dual-Function Pins/Dual-Function Mode
The rest of the devices in the ISR family have pinout/package
combinations such that the pins used for programming have
dual functionality. They are used as programming pins when
the device is being programmed, and they are used as I/Os
when the device is in normal operating mode. To use both of
these functions, you must design interface logic to isolate
programming signals from other devices on the board or
incorporate some of this interface logic into the output enable
design of the devices driving the ISR devices to be
programmed.

Dual-Function Pins/Single-Function Mode
Alternatively, the designer can decide to use these
dual-function pins as programming pins only and not connect
them as I/Os for normal operation. In this case we refer to the
use of a dual-function device being used in single-function
mode. The design is simpler in this case as no special
interface logic is required.

Figure 2. Layout of Connector for Cable on Board
Top View

TDO

GND

VCC

NC

ISR*

TDI

JTAGen

TCK

GND

TMS

PIN1
3

Designing with Cypress ISR CPLDs for PC Cable Programming
Designs That Use Devices With Dual-Function
Programming Pins
There are two ways to design with devices that have
dual-function programming pins. First, you could use the
dual-function pins as single-function pins. That is, you could
decide to use only the JTAG function of the pins and not use
those pins as I/Os in your design. The other way to use them
is as true dual-function pins, functioning both as JTAG pins in
programming mode and as I/Os in normal operating mode.
Most customers will use the dual-function pins only in their
JTAG function.

Devices With Dual-Function Programming Pins Used in
Single-Function Mode
To use the ISR devices in this way, with the dual-function pins
used as programming pins only, the total number of I/Os used
in your design must be equal to or less than (n – 4), where n
is the total number of input and I/O pins available on the
device. This way is the preferred method of design. It is much
easier and will save both time and components over imple-
menting the kind of logic described in the next section for
dual-function pins used in dual-function mode.
To design with the dual-function pins used in single-function
mode, simply do not allow an I/O function to be placed on
these dual-function pins. Two ways to do this are described
below.
First, if you are using the Cypress Warp VHDL compiler, you
can use a simple synthesis directive called “pin_avoid” to
make sure the compiler does not assign signals to whatever
pins you specify. In this case, of course, you would specify the
pin number of the dual-function pins. An example of the exact
text to include in your VHDL code appears in Figure 3. This
example assumes you are using the CY7C373i or CY7C374i
in the 84-pin PLCC package where pins 14, 35, 51, 72, and
83 are the ISR pins. For a complete listing of all the ISR pins
of all members of the FLASH370i or Ultra37000 families see
the application notes “An Introduction to In-System Repro-
gramming (ISR) with the FLASH370i” or “An Introduction to
In-System Reprogramming (ISR) with the Ultra37000.”
If you prefer you can also ensure the dual-function pins do not
get used as I/Os in normal operating mode by explicitly
assigning all of the signals to pins in your design. You just
need to make sure you assign all of the signals to pins other
than the dual-function pins. An example showing how to do
this in Warp using the “pin_numbers” directive is shown in
Figure 4. Again, this example assumes you are using the
CY7C373i or CY7C374i in the 84-pin PLCC package, so pins
14, 35, 51, 72, and 83 are not being used. Notice that none
of the signals used in the example in Figure 4 are assigned
to these pins. This approach can be more time-consuming
than using the “pin_avoid” directive, especially if your design
has a large number of I/Os. When you do this, you also need
to take some device-specific resource information into
account. Since the compiler can account for all of this for you
automatically, it is usually easier to just use the “pin_avoid”
directive. Additionally the “pin_avoid” attribute places fewer
restrictions on the fitter software making it easier to fit
designs.

Devices With Dual-Function Programming Pins Used in
Dual-Function Mode
There are cases where you may need or want to take
advantage of the dual functionality of the dual-function
programming pins. For example, you may not have enough
I/O pins for your design if you do not use the dual-function ISR
programming pins as I/Os when the device is in normal
operation. Other times, you may want to use the dual-function
ISR pins as I/Os in normal operation because their physical
position makes your board layout easier. If you want to do this
in your design, you can do it fairly easily; it simply requires a
little bit of extra logic and some additional small components.
This next section shows you how to do this.
The TDI, TCK, and TMS programming pins are all inputs to
the device during programming, and they always share pins
with bidirectional I/Os when they are dual-function pins. The
TDO programming pin, on the other hand, is an output pin
from the device during programming. It, too, always shares a
pin with a bidirectional I/O when it is a dual-function pin.
These I/O pins, in turn, can be used as input only, output only,
or bidirectional I/Os in any design, based upon the function-
ality that is described for these pins in the programmable logic
chip’s design description. The result is that there are six
different cases to consider: An ISR input programming pin
(TDI, TCK, TMS) can share a pin with a signal that is an input,
an output, or an I/O; and you can have an ISR output
programming pin (TDO) sharing a pin with a signal that is an
input, an output, or an I/O. We next look at each of these six
cases individually.
What you are trying to accomplish in all of these cases is
fundamentally the same. You are trying to isolate the
programming signals from the normal operating signals on
the board. You do not want the programming signal to drive
or affect anything else on the board when you are
programming the ISR device, and you do not want the normal
operating signal to drive, affect, or be affected by the
programming logic when the ISR device is operating normally
in the system. The basic strategy in all of the cases listed
above is to use three-state buffers or multiplexers on these
signals, and to have those buffers or multiplexers controlled
by the ISR* signal from the programming cable. The ISR*
signal, recall, is a signal from the programming cable that is
a logic LOW when JTAGen is enabling the ISR interface.

Dual-Function Mode Operation: I/O Pin Used as an Input
First, consider the case of the ISR programming pins that are
inputs to the device during programming; TDI, TCK, and
TMS. When one of these device pins is being used as an
input during normal operating mode, you simply have to
select between one of two inputs based on whether you are
in programming mode or in operating mode. This is imple-
mented very easily by using a 2:1 multiplexer where ISR* is
the select line, as shown in Figure 5(a). Alternatively, you
could implement this by having two three-state buffers whose
inputs are TDI (or TMS or TCK) and signal, whose outputs are
tied together and to the TDI/IO pin, and whose enable lines
are controlled by opposite values of ISR*. This is shown in
Figure 5(b). One way you could implement this logic is with
FCT-family devices. For example, you could use one of the
four 2:1 multiplexers in a CY74FCT257T to implement the
logic shown in Figure 5(a). Alternatively, you could use a pair
of transceivers or pass-transistors from a CY74FCT244T or
a CYBUS3384 to implement the logic shown in Figure 5(b).
4

Designing with Cypress ISR CPLDs for PC Cable Programming
The connections for the FCT257T, FCT244T, and
CYBUS3384 are shown in Figure 5(c), (d), and (e), respec-
tively. To reduce unnecessary noise it is a good idea to tie the
unused inputs on the FCT devices to ground instead of letting
them float.
The inverter shown in Figure 5(e) can be eliminated by imple-
menting an inversion within the CYBUS3384 device. This
requires using only an external resistor and a few additional

connections. An inversion of the connection to pin BE1* is
accomplished by connecting +5V to pin A1 and connecting
one end of a resistor to GND and the other end to pin B1. B1
is then the inverse of the input connected to BE1*, which is
ISR*. By implementing this inversion, the inverter in
Figure 5(e) can be removed, and pin B1 can be connected to
pin BE2*. The BE1*, A0, A5, B0, and B5 pin connections
remain the same.

Figure 3. VHDL Code Fragment Showing pin_avoid Attribute

Figure 4. VHDL Code Fragment Showing pin_numbers Attribute

-- example of using “pin_avoid” for single–function mode of
-- dual–function devices
entity cpuctl is port (

a : inbit_vector (31 downto 0);
rd, wr:outbit;
hold:bufferbit;
status:outbit_vector (7 downto 0));

attribute pin_avoid of cpuctl:entity is “14 35 51 72 83”;
end cpuctl;
-- architecture would follow

-- example of explicit pin assignments that avoid ISR pins
-- to facilitate single–function mode of dual–function devices
entity cpuctl is port (

a : inbit_vector (15 downto 0);
rd, wr:outbit;
hold:bufferbit;
status:outbit_vector (7 downto 0));

-- assign pins below and avoid pins 14, 35, 51, 72, and 83
attribute pin_numbers of cpuctl:entity is
“a(15):12 a(14):13 a(13):15 a(12):16 a(11):17 a(10):18 a(9):19 “ &
“a(8):24 a(7):25 a(6):26 a(5):27 a(4):28 a(3):29 a(2):30 “ &
“a(1):31 a(0):33 rd:36 wr:37 hold:38 status(7):54 status(6):55 “ &
“status(5):56 status(4):57 status(3):58 status(2):59 status(1):60 “ &
“status(0):61“;
end cpuctl;
-- architecture would follow
5

Designing with Cypress ISR CPLDs for PC Cable Programming
The FCT devices shown are just one possible way of imple-
menting this logic, of course. There are others, including
using extra pins and gates from an ASIC, FPGA, CPLD, or
PAL® device already on the board. Regardless of whether the
buffer or multiplexer is in an FCT device, ASIC, FPGA, or
other device, there will be some additional propagation delay
for the normal operating signal due to the presence of that
logic. This must be accounted for in your design. Using the
CYBUS3384 provides the smallest extra delay, less than one
quarter of one nanosecond. The extra delay holds true for the
other cases presented next.

Dual-Function Mode Operation: I/O Pin Used as an Output
In the case of the TDI, TCK, or TMS sharing a pin with an I/O
that is used only as an output during normal operating mode,
the logic is slightly different. Much like the case above, you
can just use a pair of three-state buffers or pass-transistors to
separate the signals that are used for the two different
functions. In this case, however, instead of tying the two
outputs together, you tie the output of one buffer both to the
dual-function pin of the ISR device and to the input of the
other buffer. The input to the first buffer is the programming

Figure 5. Design for Dual-Function Pins: TDI/TCK/TMS Used with Input

TDI

Signal

ISR*

0

1

y

S

TDI/IO

ISR

(a) Multiplexer Solution

TDI

Signal

ISR*

TDI/IO

ISR

(b) Buffer Solution

ISR

ISR*

TDI

Signal

1

2

3
4

TDI/IO

FCT257T
DIP/SOIC/QSOP

Ya
I0a

I1a

S

(c) FCT257T Implementation

ISR

ISR*

TDI

Signal

1

2

17
18 TDI/IO

FCT244T
DIP/SOIC/QSOP

OA0

OB0

19

3

OEA

OEB

DA0

DB0

(d) FCT244T Implementation

ISR*

TDI

Signal

1

3

14

2
TDI/I/O

CYBUS3384
DIP/SOIC/QSOP

B0

B5

13

15

ISR

BE1

BE2

A0

A5

(e) CYBUS3384 Implementation

TDI/IO
6

Designing with Cypress ISR CPLDs for PC Cable Programming
function signal, and the output from the other buffer is the
normal operation output Signal. The first buffer is enabled
when ISR* is asserted and is disabled otherwise, and the
second buffer is enabled when ISR* is deasserted and is
disabled otherwise. This is shown in Figure 6. Thus, when the
device is being programmed, TDI (or TMS or TCK) is driving
the TDI/IO pin and Signal is in three-state, and when the
device is not being programmed, the TDI/IO pin is not driven
as an input allowing the ISR output to drive Signal. Because
Signal is in the three-state during programming, you may
need to have a pull-up or pull-down resistor on Signal
depending on how you use it on your board.

You can also use a CYBUS3384 as an alternative to the
buffers, as shown in the previous case. This would be the
most flexible solution because it would work for all configura-
tions—the pin used as an I, O, or I/O—and allows you to
decide later exactly how to use that pin.

Dual-Function Mode Operation: I/O Pin Used as an Input
and an Output
In the case of the TDI, TCK, or TMS sharing a pin with an I/O
that really is used as a bidirectional I/O, the logic needed is a
little more complicated. As seen in Figure 7, part of the logic
is a combination of the two solutions for the two individual
cases above in the way it uses ISR* to separate the
programming function of TDI (or TMS or TCK) from the input
and output functions of Signal during normal operating mode.
There is more than just this logic required, however. It is also
necessary to use an extra pair of buffers to separate the input
and output functionality of Signal itself. This is required to
keep from unintentionally building a feedback loop and is
implemented using an extra signal that indicates the direction
of the I/O pin. In this example, we assume we have a signal
called dir, and that dir is HIGH when the I/O pin is being used
as an input and dir is LOW when the I/O pin is being used as
an output.
To understand why this is necessary, consider just combining
the logic from Figure 5(b) and Figure 6. The result would be
the logic shown in Figure 8, which is different from Figure 7 in
that buffers b4 and b5 were eliminated and intermediate
signals w, x, and y are now all simply connected together and
to the TDI / IO pin. In the logic of Figure 8, when the ISR
device is in normal operation mode and ISR* is HIGH, buffers
b2 and b3 would both be enabled. If Signal were an input at
that time, it would drive the input to buffer b2, whose output
would drive the input to buffer b3. The output of buffer b3
would be driving the input of b2 again, resulting in a feedback
loop that could produce undesired affects. The same thing
would happen if Signal were an output at that time.
Buffers b4 and b5 in Figure 7 prevent this. In the logic of
Figure 7, when signal is an output from the ISR device, b5 is
enabled and b4 is disabled; when Signal is an input to the
device, b4 is enabled and b5 is disabled. In both cases, both
the function and value at the pin of the device and the function
and value of Signal are the same, correct, and only driven by
one source. There is no dangerous self-driving feedback
system like there is in Figure 8.

Figure 6. Design for Dual-Function Pins: TDI/TCK/TMS
Used With an Output

TDI

Signal

ISR*

TDI/IO

ISR

Figure 7. Design for Dual-Function Pins: TDI/TCK/TMS Used With an I/O

TDI

Signal

ISR*

TDI/I/O

ISR

b1

b2

b3

b4

b5

dir

W

X

Y

7

Designing with Cypress ISR CPLDs for PC Cable Programming
The limitation of this solution is that it requires the extra signal
dir. This signal may be already available; in fact, it may be an
input to the ISR device itself for use as the OE-control on the
pin in question. If it is not already available, you will need to
generate it using other logic on the board. If you cannot do it
using other logic on your board, you should certainly be able
to generate it using logic inside the ISR device itself, because,
as pointed out above, it should be the same signal as the OE
used on that pin internally. To get the signal out of the ISR,
however, requires an additional pin. If you are using the logic
in Figure 7 to save a pin, having to use a pin on the device to
generate dir will not gain you anything. If generating one dir
will help you save two or three pins by allowing you to use two
or three of TDI, TCK, and TMS as dual-function pins, then you
will still have a net savings of one or two pins and it may be
worth it.
As was mentioned in the case where the TDI (or TMS or TCK)
dual-function pin was being used with an input-only pin or with
an output-only pin, you can also use the CYBUS3384 solution
of Figure 5(e) when trying to use the TDI (or TMS or TCK)
dual-function pin as a bidirectional I/O pin in normal operating
mode.
The logic for using the dual-functionality of the TDO / IO pin
is essentially the same as is shown in the above three cases.
The only difference is that TDO is an output during
programming mode instead of an input. Therefore, the only
difference in the logic is the orientation of some of the buffers.
The solutions for the TDO case are presented without further
explanation. The logic diagram for the case where TDO is
connected to an I/O used only as an input is shown in
Figure 9. The logic diagram for the case where TDO is
connected to an I/O used only as an output is shown in
Figure 10. The logic diagram for the case where TDO is
connected to an I/O really used as a bidirectional pin is shown
in Figure 11. You can alternatively use the CYBUS3384
solution presented in Figure 5(e) in each of these three
cases.

Figure 8. TDI/TCK/TMS Used With an I/O: Example of Incorrect Solution

TDI

Signal

ISR*

TDI/I/O

ISR

b1

b2

b3

Figure 9. Design for Dual-Function Pins:
TDO Used With an Input

Figure 10. Design for Dual-Function Pins:
TDO Used With an Output

TDO

Signal

ISR*

TDO/I/O

ISR

TDO

Signal

ISR*

TDO/I/O

ISR
8

Designing with Cypress ISR CPLDs for PC Cable Programming
Dual-Function Summary
To summarize this section, there are many ways to accom-
plish programming using devices with dual-function pins. The
easiest way to use the dual-function device is the
single-function mode. This uses the dual-function pins as
programming pins only, and is easily accomplished using the
pin_avoid and pin_numbers directives in your Warp design
file. There are also going to be cases where you will want to
use the dual-functionality, most likely because you need
some or all of the four ISR programming pins as inputs,
outputs, or I/Os during normal operation to get all the signals
you need into and out of the device for your design. The
circuits needed to share these pins are relatively straight-
forward and require only buffers or pass-transistors. These
are circuits you can implement using FCT or other logic, or
you may be able to implement them using extra gates and
pins of an ASIC, FPGA, or another PLD you already have on
the board.

Simple Cascading
Until now, we have talked about programming just a single
ISR device in the system. You can cascade many ISR devices
in a system. That is, you can daisy-chain the devices together
and connect their programming pins in such a way that the
devices can be programmed from a single connection to the
ISR programming cable.

Cascading Dual-Function ISR Devices or Single-Function
Devices in Single-Function Mode
To do this, you simply tie all of the JTAGen, TCK and TMS
pins of each device to those same pins, respectively, on all of
the other devices, and then connect them to the corre-
sponding pins of the ISR cable connector. You then connect
the TDI pin from the cable connector to the TDI pin of the first
device in the chain, then connect the TDO output of that
device to the TDI input of the next device in the chain, then
connect the TDO output of that device to the TDI input of the
next device in the chain, and so forth, until you finally connect
the TDO output of the last device in the chain to the TDO pin
of the cable connector (see Figure 12). In Figure 12 many of
the Ultra37000 devices are single-function mode devices,
therefore the JTAGen pin does not exist at all for these
devices.

Cascading Dual-Function ISR Devices in Dual-Function
Mode
In addition to the extra circuitry needed for the dual-function
pins per ISR device, the JTAGen pin must also be connected
differently on the Ultra37000 devices than the FLASH370i
devices. This is necessary because of its different function-
ality with a TTL HIGH input level as previously mentioned.
This is explained further in the rest of this application note.
Figure 15 shows an example of two dual-function mode
devices operating in dual-function mode on the TMS signal of
two of the three devices in the chain.

Cascading With Other IEEE 1149.1 Compliant Devices
Other IEEE 1149.1 compliant devices can be included in the
chain with ISR devices if the device has a JTAG interface,
contains the standard JTAG TAP controller state machine,
and supports a BYPASS instruction which uses the specified
code of all ones for the instruction. The ISR programming
software will insert the number of ones necessary to fill the
non-Cypress device’s instruction register in the appropriate
place in the bitstream that is sent. While it is possible to place
non-Cypress devices in the same ISR programming chain as
Cypress devices if they adhere to the JTAG specification, this
is not recommended as it adds complications to the chain for
programming the non-Cypress devices. Separate
programming chains are recommended. The next topic
discusses the handling of the JTAGen pin which has slightly
different functionality between the FLASH370i and the
Ultra37000 families.

Driving the JTAGen Pin on the Ultra37000 Dual-Function
Mode Devices When Being Used in Single-Function Mode
Figure 12 shows that the user does not need to worry about
driving the JTAGen pin to a particular level if the JTAG pins
are only used for ISR operations. This example shows that it
is possible for the dual-function pins to operate in the I/O
mode for the Ultra37256 device when the ISR programming
cable is removed since a TTL LOW level could exist on the
JTAGen pin. Observation of Figure 12 shows that I/O
contention problems are possible through the ISR connec-
tions from one ISR device to another if multiple Ultra37000

Figure 11. Design for Dual-Function Pins: TDO Used With an I/O

TDO

Signal

ISR*

TDO/I/O

ISR

dir
9

Designing with Cypress ISR CPLDs for PC Cable Programming
devices were connected in the same chain and the JTAG pins
are used in their I/O function. Output contention between
devices is not a problem if the output from all devices is the
same polarity. When and if further ISR operations need to be
performed the ISR cable drives the JTAGen pin HIGH which
three-states the I/O function and re-selects the JTAG function
on the dual-function pins so there is no contention problem
possible between the ISR device and the ISR cable.

Driving the JTAGen Pin on the Ultra37000 Dual-Function
Mode Devices When Being Used in Dual-Function Mode
In many designs the user will elect to either use a
single-function mode Ultra37000 device or use a
dual-function mode Ultra37000 device in single-function
mode. For these cases the user can ignore the following
discussion. Unlike the FLASH370i family of devices where a
TTL HIGH or LOW level on the JTAGen pin enables the I/O
functionality of the dual- function devices, the same I/O
functionality on the Ultra37000 dual-function devices occurs
when the JTAGen pin is driven to a TTL LOW level only. For
the FLASH370i it is permissible to actually let the JTAGen pin
float since the bus-hold latch would latch either a LOW or a
HIGH value. For the Ultra37000 devices this pin must be
driven to a LOW level to ensure the I/O functionality. For
Ultra37128 and smaller devices a weak pull-down device
replaces the bus-hold latch on the JTAGen pin. This
pull-down device, see the data sheet parameter IJTAG which
shows the strength of the pull-down device, keeps the pin in
the LOW state after programming and prevents the need for
external biasing on the JTAGen pin if a Ultra37000 device
replaces a FLASH370i device. Early Ultra37256P160 silicon
does not have this pull down device on the JTAGen pin but
more recent silicon has this device. If the pull-down device is
not employed then a bus-hold latch is employed and this latch

could hold a HIGH value on the pin. With multiple devices in
the chain, some devices being Ultra37128 and smaller and
some being Ultra37256P160 early silicon or FLASH370i
devices, it is still possible for the JTAGen pin to be pulled into
the HIGH state. Two methods for driving the JTAGen pin
LOW, using a external pull-down resistor and using an
external component are presented.

Using a Pull-down Resistor to Drive the JTAGen Pin LOW
to Use the I/O Function of the Dual-Function Pins
The JTAGen pin can be held at a TTL LOW by using a
pull-down resistor to ground. This works fine provided there
are not too many devices in the ISR chain. The problem with
the simple resistor is that the bus-hold latches on the JTAGen
pins may disturb the pull-down operation if there are many
other FLASH370i devices in the chain. This is because the
bus-hold latches that are connected in parallel produce a
lower source impedance. The bus-hold latch differences
between the two ISR family members are discussed further
in this note. The resistor must be able to provide a low enough
resistance to overpower the combined bus-hold latches in
parallel such that the voltage on the JTAGen pin drops below
the trip point (Vtrip)of the bus-hold latches. Once the JTAGen
pin voltage drops below Vtrip all the bus-hold latches
connected in parallel will flip to the desired LOW state. The
maximum resistance that is guaranteed to overpower N
FLASH370i bus-hold latches in parallel is given by the formula:
Rpulldown = Vtrip/(N*(IBHHO))
where Vtrip is 1.5V and IBHHO is –500 µA (maximum current
that is guaranteed to invert the state of a single bus-hold
latch). Rpulldown is 3 kΩ for one device, 600Ω for five devices,
and 300Ω for ten devices in the chain. It is recommended that
the number of devices in the chain be limited to five devices

Figure 12. Simple Cascading Example - Single-Function Mode Operation

ISR Programming
Cable Connector

JTAGen

TDI

TDO
TCK

TMS

CY7C374i
PLCC

CY7C375i
TQFP

JTAGen
TDI
TDO

TCK

TMS

Ultra37256
TQFP

JTAGen
TDI
TDO

TCK

TMS

JTAGen
TDI
TDO

TCK

TMS
10

Designing with Cypress ISR CPLDs for PC Cable Programming
if the other devices in the chain are all FLASH370i devices. The
above limitation of five devices in the chain is suggested
because the resistor value would need to be reduced which
would place too high a DC current load on the JTAGen signal
driven to 12V from the ISR cable. With a pull-down resistance
of 600Ω, the DC current load on the JTAGen pin is 12/600 or
20 mA, which is an acceptable load. Resistor values less than
600Ω would require a higher wattage resistor than the
standard 1/4 watt rating, assuming 12V is needed for
programming FLASH370i devices in the same chain. If only
Ultra37256P160 early silicon devices are in the chain and the
UltraISRPCCABLE is used then the JTAGen pin only goes to
a TTL HIGH so the number of devices in the chain can be
increased to 10. The above restriction of the pull-down
resistor can be avoided by using an external component to
choose between a TTL HIGH level and a TTL LOW level on
the JTAGen pin. Again the need for external biasing may not
be needed in many case because of the pull down device
incorporated on the Ultra37128 devices and smaller and to
be included on the Ultra37256 as well.

Using an External Component to Drive the JTAGen Pin
LOW to Use the I/O Function of the Dual-Function Pins
The JTAGen pin can be driven LOW using any of the
solutions already presented in Figure 5 regarding using the
dual-function pins in dual-function mode. The only difference
is that the JTAG input is JTAGen, which is tied to VCC instead
of one of the four JTAG pins and the “signal” input is
connected to ground. You may be able to use unused
resources in the external component solutions presented in
Figure 5 to implement this logic. Any of these solutions can
be used for multiple Ultra37000 devices ganged together.
Figure 13 shows two examples for driving the JTAGen pin
from the control of signal ISR*. As mentioned before, a pull-up
resistor is also needed on the ISR* signal at the 10-pin header
connector.

Figure 14 shows the JTAGen pin driven by an extra I/O pin of
the Ultra37000 device by simply inverting the ISR* control
signal. This would seem to be a simple alternative to adding
extra components. This solution, however, won’t work. The
problem is that the I/O pins of the device enter three-state
when the ISR mode is enabled (JTAGen driven HIGH).
Because the I/O is three-stated there is no way to drive the
JTAGen pin LOW. The dual function pins are stuck in the
JTAG function because the bus-hold latch, which is always
enabled, has latched a HIGH level on the pin. Figure 15
shows how to combine dual function FLASH370i and
Ultra37000 devices in the same chain with the appropriate
JTAGen connections assuming the user wants to use one
dual-function pin in dual-function mode for each of the
Ultra37000 devices. The figure shows that one mux can be
used for two Ultra37000 devices but many more devices can
use the same mux output signal. In this example the TMS pin
on both Ultra37000 devices is used in dual-function mode
where the I/Os are used as JTAG pins and as input pins. The
10-kΩ resistor on the ISR* signal is required to keep the mux
input HIGH when the ISR cable is removed from the board to
keep the JTAGen input LOW. Remember that if it is not
necessary to use the dual-function pins in dual-function mode
the mux can be removed and the JTAGen pin can be tied to
VCC or left connected to the JTAGen pin from the 10-pin
connector.

Figure 13. JTAGen Driven for the Ultra37000

Ultra37000

JTAGen

ISR*

0

1

y

S

Ultra37000

5 volts

JTAGen

ISR*

Figure 14. JTAGen Incorrectly Driven by Ultra37000 I/O

ISR*

Ultra37000

JTAGen
11

Designing with Cypress ISR CPLDs for PC Cable Programming

At this point the user should understand how to connect
FLASH370i and or Ultra37000 devices in an ISR chain and
how to bias the ISR interface for his programming and
functional needs. There are some remaining minor functional
differences between the two device families related to the
placement of the bus-hold latches on the five JTAG interface
pins which is addressed in the next section of the note. A few
other miscellaneous board-level concerns are also covered.

Other Considerations
Other board-level design issues to be addressed in this note
are: the state of the ISR programming cable’s pins when not
programming and the state of the ISR programming pins
when the cable is not connected, bus-hold pin differences
between the FLASH370i and the Ultra37000, and handling the
12V signal on the board for FLASH370i devices. These issues
are now addressed.

State of the ISR Device I/Os at Power-Up
When ISR devices are shipped from Cypress, the devices
have already been programmed, erased, and programmed
again as part of the testing process. They will not, therefore,
be blank when they first come out of the tube. They will,
however, be programmed such that all of the I/Os are
three-stated. Furthermore, the I/Os (except TDO) are also all
three-stated during device programming, that is, when
JTAGen is enabling the ISR interface. This allows you to
solder ISR devices directly on your board without having to
erase them first. It will allow you to power-up your board and
program the ISR devices on it without having to worry about
their initial, non-blank state causing any problems such as
output contention with other devices on the board.

The ISR programming procedure is to take ISR devices
directly from the tube, solder them onto the board, connect
the ISR cable to the board and the PC, turn on the power to
the board, and then program the devices for the first time
using the ISR programming cable connected to a PC. Since
many of the I/Os on the ISR device(s) to be programmed are
undoubtedly inputs, other devices on the board could be
driving those pins immediately upon powering up the system.
By having all of the ISR I/Os initially programmed to be
three-stated, and by having them also be guaranteed to be
three-stated during ISR programming, you are assured that
the ISR device will not be also trying to drive those pins. This
prevents bus contention, and prevents the ISR devices or
other devices on the board from being damaged. When the
JTAGen signal disables the ISR interface, the ISR device will
start driving some of its output pins, based upon the function-
ality of the design. For the Ultra37000 single-mode devices,
which do not have a JTAGen pin, this occurs when the ISR
enable register is loaded with a LOW thus disabling the
interface. At this point, it is no different from powering up a
board with preprogrammed non-ISR PAL devices, PLDs, or
CPLDs devices.
The next section discusses the state of the ISR pins when the
ISR cable is disconnected. Also discussed are the differences
that exist between the FLASH370i and Ultra37000 families due
to differences in the placement of the bus-hold latches only
on the JTAG pins. In some cases an external pull-down
resistor is needed in the ISR chain specifically for the
Ultra37000 devices on the TCK pin.

Figure 15. Cascading Dual-Function Ultra37000 and FLASH370i Devices in the Same Chain

S

ISR Programming
Cable Connector

JTAGen

TDI
TDO

TCK

TMS

JTAGen
TDI
TDO

TCK
TMS

CY7C375i-125AC

JTAGen
TDI
TDO

TCK
TMS

Ultra37128P160

JTAGen
TDI
TDO

TCK

TMS

Ultra37256P160

0

1

y

S

ISR*

10 kΩ

vcc

vcc

0

1

y

S

0

1

y

input1

input2
12

Designing with Cypress ISR CPLDs for PC Cable Programming
State of the ISR Programming Pins When the ISR
Programming Cable is Not Attached for the FLASH370i
Devices
The ISR programming cable is only plugged into the
connector on your board during programming, however, it is
acceptable to float the ISR pins for the FLASH370i devices
when the board is powered up and operating. This is OK
because the ISR devices have been designed with bus-hold
structures on every input, input/clock, and I/O pin, including
the programming pins for both dual-function and single
function devices. The exception to this is the TDO pin on
single-function devices, which is an output only and the
JTAGen pin which may incorporate a pull-down device
instead of a bus-hold latch. The bus-hold latch eliminates the
need to use external pull-up resistors or any other technique
for handling the case where the ISR programming pins are
left floating due to the ISR programming cable being discon-
nected.
Bus-hold structures enable a pin to maintain its most recent
logic value even when it is three-stated, whether that value
was being driven in as an input pin or driven out as an output
pin. This is done with a weak latch connected to the pin.
Because the ISR programming pins have bus-hold struc-
tures, when the ISR programming cable is disconnected and
the board is powered on, the ISR programming pins all
maintain a logic LOW or logic HIGH value even though they
are no longer being driven. If the ISR programming cable is
disconnected when the board is powered-down, or if the
board is powered-down and then back up after the cable has
been disconnected, there is still no problem. The ISR
bus-hold structures have been designed to always power-up
with a logic HIGH level maintained on the pins to emulate an
internal pull-up.
The utility of the bus-hold structures applies both to the case
of ISR programming pins used as single-function pins and as
dual-function pins. The bus-hold latch does not interfere with
the normal function of the pin because of the relative
weakness of the latch to the output driver. The latch is more
than 50 times weaker than the ISR device’s output driver.
Note that the ISR* pin from the ISR programming cable
connector does not necessarily connect to an ISR I/O pin.
Since it does not, you must use a pull-up on the ISR* signal
on your board so that it is not left floating when the ISR
programming cable is disconnected.

State of the ISR’s Programming Pins When the ISR
Programming Cable is Not Attached for the Ultra37000
Devices
The Ultra37000 family differs from the FLASH370i family with
respect to the connection of the bus-hold latches on the ISR
interface pins only. Specifically, the bus-hold latches are
disconnected from the JTAG pins TCK, TMS, TDI, and TDO
when the JTAGen pin is HIGH, enabling the JTAG port, and
connected when the JTAGen pin is LOW, disabling the JTAG
port. For the single-function devices there is no JTAGen pin
and the ISR interface is permanently enabled; therefore, the
bus-hold latches are permanently disabled. The reason for
these differences is that the Ultra37000 family supports JTAG
Boundary Scan testing and the bus-hold latches, if placed on
these pins, can cause significant DC loading on the JTAG
drivers to TCK and TMS depending on the source impedance
of the drivers and the number of devices connected in the ISR

chain. This can occur because some of these signals, TCK
and TMS, are connected in parallel to all the devices in the
ISR chain. An additional difference is that internal pull-up
resistors are enabled on the TDI and TMS JTAG pins when
the ISR interface is enabled. The reason for this change is
conformance to the 1149.1 specification and is necessary to
place the JTAG device in a known benign state such as
BYPASS if solder open faults occur in the ISR chain. The
bus-hold latch is still permanently enabled on the JTAGen pin
and powers up in the HIGH state. To determine whether
external resistors are needed we once again must consider
the single- and dual-function mode cases.
For single-function mode devices the only pin that needs a
resistor pull-down is the TCK pin since there are already
internal pull-ups for TDI and TMS and the TDO pin is a
dedicated output pin.
For dual-function mode devices operating in single-function
mode or dual-function mode no external pull-ups are
necessary since the bus-hold latches are reconnected to the
ISR pins once the ISR interface is disabled.
The value of this pull-down resistor for TCK is not crucial
since the external JTAG pin driver simply has to be strong
enough to overpower the resistor. Typical values are 10 kΩ
or 1 kΩ.

State of the ISR’s Programming Pins When the ISR
Programming Cable is Not Attached for Both Ultra37000
Devices and FLASH370i Devices in the Same ISR Chain
For the case where both single-function mode Ultra37000
and FLASH370i devices are in the ISR programming chain, no
external resistor is needed even on the TCK pin. This is
because these pins are connected in parallel to all devices in
the chain and the bus-hold latches, that are always present
on the FLASH370i devices, hold the pin to a logic LOW or
HIGH level preventing it from floating. The last issue to
discuss in this application note pertains only to FLASH370i
devices and programming board layout concerns.

Handling the 12V Signal on the Board for FLASH370i
Devices
Unlike the Ultra37000, where the JTAGen signal serves only
to choose either the ISR interface or the I/O function on the
dual function pins, for the FLASH370i devices it is also the
high-voltage, low-impedance path required for programming
the device. There are two requirements on the JTAGen
programming voltage that necessitate special handling when
programming FLASH370i devices. The first is that its voltage
must be in the range 11.4V < JTAGen < 12.6V during
programming, and the second is that its maximum transient
current is 40 mA per ISR device during programming. The
5V/12V DC/DC converter and other components in the ISR
programming cable described in this application note have
been chosen to ensure that these specifications are met.
Therefore it is suggested that the 12V supplied by the ISR
cable be used for programming rather than another 12V
supply that may be available on the board.
Because of the higher than usual current and voltage require-
ments on the JTAGen signal, the trace on the printed-circuit
board connecting the JTAGen pin from the ISR programming
cable to the JTAGen pin on the FLASH370i device(s) also
deserves special attention. First, to handle the current, the
trace should be double the width of the standard traces.
13

Designing with Cypress ISR CPLDs for PC Cable Programming
Second, the trace should be kept as short as possible. In
general, this means the connector for the ISR programming
cable should be placed as close as possible to the FLASH370i
devices on the board. Since the connector is small, it is much
easier to move the connector closer to the devices than
change the whole board layout to place the devices close to
the chosen spot for the connector.

Decoupling the JTAGen Pin to Ground for FLASH370i
Devices
One further board layout recommendation is to place a 10-nF
capacitor located at the 10-pin header connector on the circuit
board on the JTAGen pin to ground if there are FLASH370i
devices to be programmed on the board. If proper ISR cable
connection procedures explained in this application note are
followed this capacitor is not needed. If the ISR cable is
hot-socket connected to the user’s board, which is not recom-
mended, then this capacitor insures a proper, slow ramping
12V is applied to the devices to be programmed under all
operating conditions with no risk of damage to the JTAGen
pin. Since the ISR cable could easily be hot socketed
connected by accident, it is advisable and simple to incor-
porate this decoupling capacitor.

Conclusion
In-system reprogrammability (ISR) in a CPLD has several
benefits. It allows engineering development and debugging
without having to socket the CPLDs and without having to
remove them and reprogram them in a device programmer.
This saves time regardless of the package type you decide to
use. ISR is especially valuable when you decide to use
fine-pitch packages like TQFPs. As before, it allows you to
use them without sockets, which means, again, no handling

of devices for reprogramming. Not only does that save time,
but in this case, it also avoids the higher potential for bending
leads on very fine-leaded devices. Also, by allowing you to
solder TQFP packages directly onto a board without sockets,
it helps you avoid spending time simply checking
device-to-socket-lead connections during debugging. ISR
also allows for designs which can be reconfigured in the field,
either by a software update or by other input from the system.
The superior routability and flexible architecture of the
Cypress ISR CPLDs enhance the value of all of these benefits
greatly by allowing you to actually make design changes
during prototyping, debugging, or field operation and still
successfully route to the already-defined pinout, even on
designs that are utilizing most or all of many of the device’s
resources.
This application note shows how to take advantage of the
in-system reprogrammability of the FLASH370i, Ultra37000,
Quantum38K, and Delta39K ISR families of devices by using
a cable connected to the parallel or USB port of a PC for
programming the CPLDs on the board. This typical usage
during development and debugging, which, as described
above, is an area where the ISR architecture and routability
are particularly useful. This application note explains all of the
details of the programming cables and the signals it uses, and
it also covers many design techniques and considerations
that show how to most easily use the desired capabilities of
these parts. These include, description of the logic designs
for using the dual-function pins on ISR devices whose
programming signals share pins with I/O signals, connecting
ISR devices in the programming chain, bus-hold and JTAG
enable differences between the FLASH370i and Ultra37000
device families, and tips for handling the 12V programming
signal on your board for the FLASH370i devices.

PAL is a registered trademark of Advanced Micro Devices. Warp is a registered trademark, and ISR, In-System Reprogrammable,
FLASH370i, and Ultra37000 are trademarks, of Cypress Semiconductor. All product and company names mentioned in this
document are the trademarks of their respective holders.
Approved AN051 8/22/03 kkv
© Cypress Semiconductor Corporation, 2003. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.

