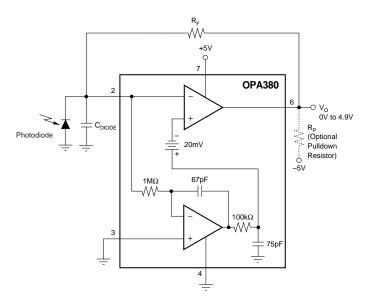


SBOS291 - NOVEMBER 2003


Precision, High-Speed Transimpedance Amplifier

FEATURES

- OVER 1MHz TIA BANDWIDTH
- DYNAMIC RANGE: 5 Decades
- EXCELLENT LONG-TERM STABILITY
- VERY LOW 1/f NOISE
- BIAS CURRENT: 50pA (max)
- OFFSET VOLTAGE: 25µV (max)
- DRIFT: 0.1μV/°C
- GAIN BANDWIDTH: 85MHz
- QUIESCENT CURRENT: 6mA
- SUPPLY RANGE: 2.7V to 5.5V
- SINGLE AND DUAL VERSIONS
- MicroSIZE PACKAGE: MSOP-8

APPLICATIONS

- PRECISION I/V CONVERSION
- PHOTODIODE MONITORING
- OPTICAL AMPLIFIERS
- CAT-SCANNER FRONTEND

DESCRIPTION

The OPA380 family of transimpedance amplifiers provides high-speed (85MHz Gain Bandwidth (GBW)) operation, with extremely high precision, excellent long-term stability, and very low 1/f noise. The OPA380 features an offset voltage of 25 μ V, offset drift of 0.1 μ V/°C, and maximum bias current of 50pA. The OPA380 far exceeds the offset, drift, and noise performance that conventional JFET op amps provide.

The signal bandwidth of a transimpedance amplifier depends largely on the GBW of the amplifier, and the parasitic capacitance of the photodiode as well as the feedback resistor. The 85MHz GBW of the OPA380 enables a transimpedance bandwidth of > 1MHz in most configurations. Therefore, the OPA380 is ideally suited for fast control loops that detect and react to fast changes in the optical power level on a fiber.

Due to the high precision and low-noise characteristics of the OPA380, a dynamic range of 5 decades can be achieved. This allows the measurement of signal currents in the order of 10nA, and up to 1mA in a single I/V conversion stage. In contrast to logarithmic amplifiers, the OPA380 provides verywide bandwidth, even at 10nA input currents. By using an external pulldown resistor to -5V, the output voltage range can be extended to include 0V.

The OPA380 (single) is available in MSOP-8 and SO-8 packages. The OPA2380 (dual) comes in the miniature MSOP-8 package. They are specified from -40° C to $+125^{\circ}$ C.

OPA380 RELATED PRODUCTS

PRODUCT	FEATURES
OPA355	200MHz GBW CMOS, 2.5V to 5V Supply
OPA354	100MHz GBW CMOS, RRIO, 2.5V to 5V Supply
OPA350	500µV V _{OS} , 38MHz, 2.5V to 5V Supply
OPA335	10µV V _{OS} , Zero-Drift, 2.5V to 5V Supply
OPA132	16MHz GBW, Precision FET Op Amp, ±15V
OPA656/7	230MHz, Precision FET, ±5V
LOG112	LOG amp, 7.5 decades, ±4.5V to ±18V Supply
LOG114	LOG amp, 7.5 decades, ±2.25V to ±5.5V Supply
IVC102	Precision Switched Integrator TIA

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

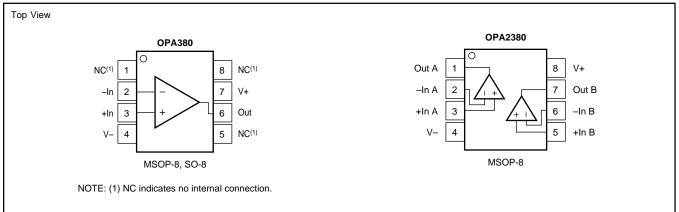
All trademarks are the property of their respective owners.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

+7V
–0.5V to (V+) + 0.5V
±10mA
Continuous
40°C to +125°C
65°C to +150°C
+150°C
+300°C

NOTES: (1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these, or any other conditions beyond those specified, is not implied. (2) Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.5V beyond the supply rails should be current-limited to 10mA or less. (3) Short-circuit to ground, one amplifier per package.

ELECTROSTATIC DISCHARGE SENSITIVITY


This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PACKAGE/ORDERING INFORMATION

PRODUCT	PACKAGE-LEAD	PACKAGE DESIGNATOR ⁽¹⁾	SPECIFIED TEMPERATURE RANGE	PACKAGE MARKING	ORDERING NUMBER	TRANSPORT MEDIA, QUANTITY
OPA380	MSOP-8	DGK	–40°C to +125°C	TBD	OPA380AIDGKT	Tape and Reel, 250
"	"	"	"	"	OPA380AIDGKR	Tape and Reel, 2500
OPA380	SO-8	D	–40°C to +125°C	OPA380A	OPA380AID	Rails, 100
"	"	"	"	"	OPA380AIDR	Tape and Reel, 2500
OPA2380	MSOP-8	DGK	-40°C to +125°C	TBD	OPA2380AIDGKT	Rails, 250
"	"	"	"	"	OPA2380AIDGKR	Tape and Reel, 2500

PIN CONFIGURATIONS

ELECTRICAL CHARACTERISTICS: $V_s = +2.7V$ to +5.5V

Boldface limits apply over the specified temperature range, $T_A = -40^{\circ}C$ to $+125^{\circ}C$.

At T_A = +25°C, R_L =2k\Omega connected to V_S/2, and V_{OUT} = V_S/2, unless otherwise noted.

			OPA380, OPA2380		
PARAMETER	CONDITION	MIN	ТҮР	МАХ	UNITS
OFFSET VOLTAGE Input Offset Voltage V _{OS} Drift dV _{OS} /dT vs Power Supply PSRR Over Temperature Long-Term Stability ⁽¹⁾ Channel Separation, dc			4 TBD 2.4 See Note (1) 1	25 0.1 10 5	μV μ V/°C μV/V μ V/V μV/V
INPUT BIAS CURRENT Input Bias Current IB Over Temperature Input Offset Current IOS	$V_{\rm CM} = V_{\rm S}/2$	Турі	1 cal Character 1	±50 ristics ±100	рА рА
NOISE en Input Voltage Noise, f = 0.1Hz to 10Hz en Input Voltage Noise Density, f = 10kHz en Input Voltage Noise Density, f = 1MHz en Input Current Noise Density, f = 1kHz in INPUT VOLTAGE RANGE Common-Mode Voltage Range	$V_{S} = +5V, V_{CM} = 0V$ $V_{S} = +5V, V_{CM} = 0V$ $V_{S} = +5V, V_{CM} = 0V$ $V_{S} = +5V, V_{CM} = 0V$	V-	3 67 5.5 100	(V+) - 1.8V	µV _{PP} nV/√Hz nV/√Hz fA/√Hz
Common-Mode Rejection Ratio CMRR	(V-) < V _{CM} < (V+) - 1.8V	100	130		dB
INPUT IMPEDANCE Differential Capacitance Common-Mode Resistance and Capacitance			1 10 ¹³ 3		pF Ω∥pF
OPEN-LOOP GAIN Open-Loop Voltage Gain A _{OL}	$\begin{array}{l} 0.1 \text{V} < \text{V}_{\text{O}} < (\text{V+}) - 0.6 \text{V}, \ \text{V}_{\text{CM}} = \text{V}_{\text{S}}/2 \\ 0 \text{V} < \text{V}_{\text{O}} < (\text{V+}) - 0.6 \text{V}, \ \text{V}_{\text{CM}} = 0 \text{V}, \ \text{R}_{\text{P}} = 2 \text{k} \Omega \ \text{to} \ -5 \text{V}^{(2)} \end{array}$	110 106	130 120		dB dB
FREQUENCY RESPONSE Gain-Bandwidth Product GBW Slew Rate SR Settling Time, 0.01% ⁽³⁾ ts 0.0015% ⁽³⁾ Verload Recovery Time ^{(4), (5)}	$C_{L} = 50pF$ $G = +1$ $V_{S} = +5.5V, 4V \text{ Step, } G = +1$ $V_{S} = +5.5V, 4V \text{ Step, } G = +1$ $V_{IN} \bullet G > V_{S}$		85 80 3.5 9.2 0.5		MHz V/μs ns μs μs
OUTPUT Voltage Output Swing from Positive Rail Voltage Output Swing from Negative Rail Voltage Output Swing from Negative Rail Voltage Output Swing from Negative Rail Output Current Ioutput Current Short-Circuit Current Isc Capacitive Load Drive CLOAD Open-Loop Output (Impedance) Voltage			10 60 ypical Charac 200 ypical Charac TBD		mV mV mV mA
POWER SUPPLY Specified Voltage Range V _S Quiescent Current (per Amplifier) I _Q Over Temperature I	l ₀ = 0	2.7	6	5.5 7.5 8	V mA mA
TEMPERATURE RANGE Specified Range Operating Range Storage Range Thermal Resistance MSOP-8 SO-8		40 40 65	150 150	+125 +125 +150	°C °C °C W\2°

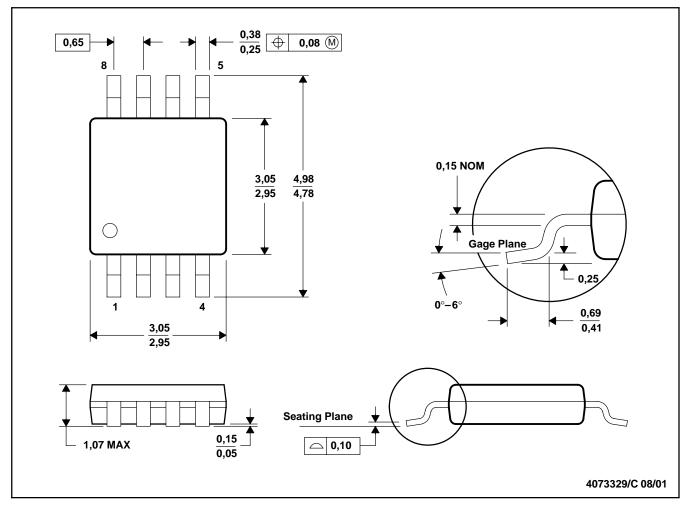
NOTES: (1) 300-hour life test at 150°C demonstrated randomly distributed variation approximately equal to measurement repeatability of 1µV.

(2) Tested with output connected only to R_P, a pulldown resistor connected between V_{OUT} and –5V, as in Figure xxx. See also applications section Achieving Output Swing to the Negative Rail.

(3) Transimpedance frequency of 200kHz.

(4) Time required to return to linear operation.

(5) From positive rail.



MECHANICAL DATA

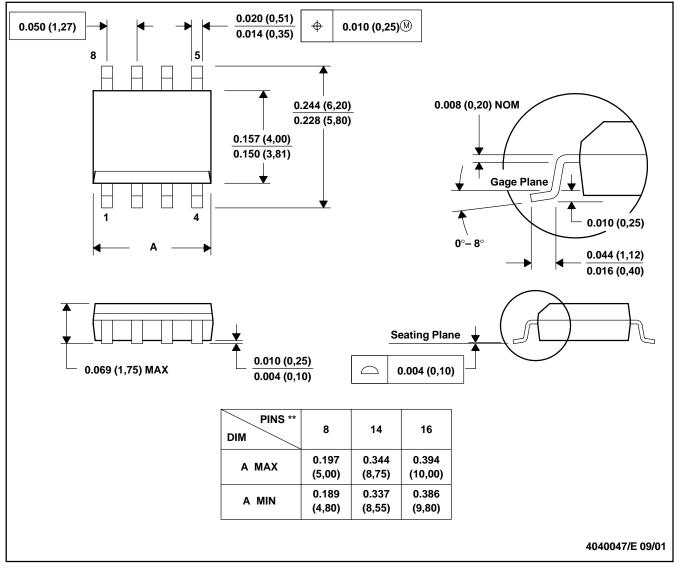
MPDS028B - JUNE 1997 - REVISED SEPTEMBER 2001

DGK (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.
- D. Falls within JEDEC MO-187



MECHANICAL DATA

MSOI002B - JANUARY 1995 - REVISED SEPTEMBER 2001

PLASTIC SMALL-OUTLINE PACKAGE

D (R-PDSO-G**) 8 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-012

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address:

Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2003, Texas Instruments Incorporated