

Peripheral Integrated Circuits

Complimentary Products for NVE's GMR Sensors

In addition to GMR Sensor products, NVE has begun designing and manufacturing accessory products for our sensors. These products are designed to be used with NVE"s sensors, or in some cases as stand-alone parts, to provide higher level signal processing capabilities coupled with the robust performance characteristics that NVE products are known for.

DB Series Power Switch ICs – In many industrial control applications, a digital current output of up to 200mA is required. NVE's DB Series parts are designed to meet these requirements. They feature transient protection to meet rigid EMC and ESD standards, thermal shutdown for temperature protection, reverse battery protection , a regulated voltage output, an on-chip LED driver, and short circuit protection of the current drive output transistor. The DB001-00 is designed specifically to work together with NVE's AD9xx-00 short circuit protected GMR switch, to create a very small IC combination suitable for use in miniature sensor assemblies. The DB002-02 is designed to take a generic digital input from any source, including inductive and photo sensors, and provide the digital current output.

DC Series Voltage Regulator ICs – These ICs are designed for use in high voltage, low current applications. They provide a wide input voltage range, up to 60V, and are available in 3.3V and 5.0V outputs. They feature reverse battery protection and excellent immunity to transients and noise, allowing for the reduction or elimination of filtering devices at the PCB level. They are available in the TDFN6 package, which features a small PCB footprint (2.5mm X 2.5mm), and an exposed lead frame on the back, for heat sinking to the PCB. DC series voltage regulators meet 42V automotive standards.

DD Series Signal Processing IC for Analog GT Sensors – The DD001-12 is designed to be interfaced with an NVE ABL series GT Sensor, to provide a digital output signal with excellent stability characteristics. It can be located away from the sensor, so that the ABL package (MSOP8 or TDFN6) can be placed in a small remote housing, resulting in the absolute minimum size sensor package. The DD001-12 can also be used with other sensing devices which feature a sinusoidal output, to provide the same stable current modulated signal that it provides for NVE's ABL series GT Sensors.

DB Series Power Switch ICs

Features:

- \Rightarrow Designed to Work Independently, or with AD9xx
- \Rightarrow High Current Output
- ⇒ Short Circuit, Reverse Battery, and Transient Protection
- \Rightarrow LED Driver
- \Rightarrow Excellent Temperature and Voltage Performance
- ⇒ Small, Low Profile Surface Mount Package

Applications:

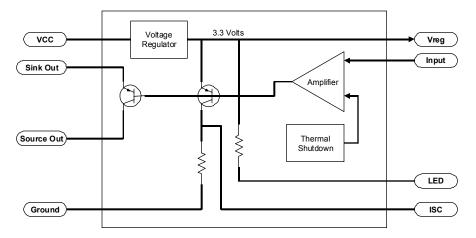
- \Rightarrow Output Driver for Sensor Assemblies
- \Rightarrow Usable with Magnetic, Inductive, and Photo Sensors

Description:

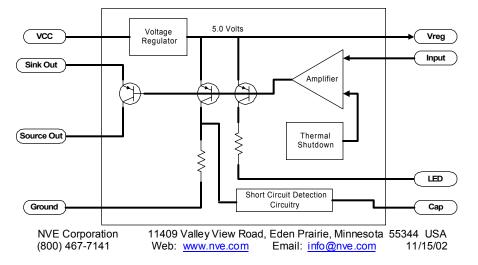
The DB series signal processing ICs are designed to take a digital input from a sensor element, and provide a high current switched output corresponding with the sensor input. These parts function as the "front end" of a complete sensor assembly, and include protection against short circuits and high voltage transients from capacitive and inductive loads. The parts also feature thermal shutdown circuitry and reverse battery protection. They provide a regulated output voltage for the sensor and other components in the assembly, and an LED driver to indicate an "ON" condition.

Two different part numbers are offered, the DB001-00 and the DB002-02. The DB001-00 is designed to work with NVE's AD9xx short circuit protected GMR switch products. Together, these two ICs form the bulk of the signal processing required for pneumatic cylinder position sensing electronics. Using these two ICs, the end user only requires a few capacitors and an LED in order to implement the complete sensor assembly circuit. In addition, both the AD9xx part and the DD001-00 part come in MSOP8 packages, so that the customer can implement the complete design on an extremely small PCB.

The DB002-02 uses the larger SOIC8 package, and is designed to work with NVE's AD1xx GMR Switch products, as well as any other current sourcing or CMOS/TTL digital output sensor element, such as an inductive sensor or a photo sensor. For size critical applications, both the DB001-00 and DB002-02 are available in die form.



Part Numbers and Configurations:

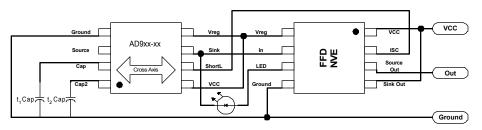

Part Number	Input	Die Size (mm)	Package	Marking
DB001-00	Current Sinking from AD9xx-00	1.48 X 2.25	MSOP8	FFD
DB002-02	Any Current Sourcing or CMOS/TTL Compatible Digital Output Device	1.48 X 3.00	SOIC8	Part Number

Schematic:

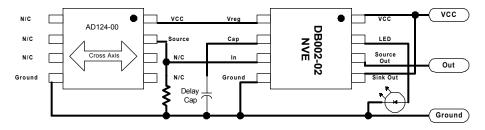
A block representation of the DB001-00 series parts is shown below:

A block representation of the DB002-02 series parts is shown below:

Packages:


Please see the package drawing section in the Appendix for dimensions of the MSOP8 and SOIC8 packages.

Pin Configuration:


Application Circuits:

DB001-00 in Current Sourcing Output Configuration:

Note: For current sinking applications, connect Source Out pin to Ground, and use Sink Out pin as the output.

DB002-02 in Current Sourcing Output Configuration:

Note: For current sinking applications, connect Source Out pin to Ground, and use Sink Out pin as the output.

NVE Corporation	11409 Valley View Road, Ed	den Prairie, Minnesota	55344 USA
(800) 467-7141	Web: <u>www.nve.com</u> Ei	mail: <u>info@nve.com</u>	11/15/02

Parameter	Min	Тур	Max	Units
Input Voltage (DC001-00)	4.5		30	Volts
Vreg Voltage (DC001-00)	3.0	3.3	3.6	Volts
Input Voltage (DC002-02)	6.2		30	
Vreg Voltage (DC002-02)	4.5	5.0	5.5	Volts
Vreg Output Current			10	Milliamps
Switched Output Current			200	Milliamps
Bias Current (DC001-00)		1.0		Milliamps
Bias Current (DC002-02)		1.4		Milliamps
Bias Current Change when part is On (DC002-02)			+700	Microamps
LED Drive Current		3		Milliamps
Thermal Shutdown Temperature		175		C°
Sinking Input Current Required (DC001-00)		100		Microamps
Sourcing Input Current or CMOS/TTL Drive Current Required (DC002-02)		5		Microamps

Electrical characteristics @-40°C to +125°C, unless otherwise noted

Absolute maximum ratings *				
Parameter	Limit			
Input Voltage	36V			
Reverse Battery Protection	-36V			
Output Current	300mA			
Junction Temperature Range, TJ	-40°C to +175°C			
Storage Temperature Range	-65 °C to +200°C			

*Stresses beyond those listed under "Absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Electrical characteristics" is not implied.

Notes:

- 1. This part has reverse battery protection to -36V
- 2. Due to package size, MSOP8 package contains 3-letter code to designate part type.

DC Series Voltage Regulators High Voltage, Low Power Voltage Regulators

Features:

- \Rightarrow Input Voltage to 48VDC (Max Rating 60VDC)
- \Rightarrow 5.0V and 3.3V Regulated Output
- ⇒ Reverse Battery Protection
- \Rightarrow Excellent Immunity to Transients and ESD
- \Rightarrow High Temperature Operation
- \Rightarrow Small, Low Profile Surface Mount Package

Applications:

- \Rightarrow Industrial Sensors and Controls
- \Rightarrow Automotive Sensors and Controls

Description:

The DC series voltage regulator ICs are designed to be used in harsh, noisy environments where immunity to large voltage transients and acceptance of high input voltages are required. These regulators protect the sensitive electronic components downstream, while providing a stable regulated supply voltage. They are rated for high temperature operation, up to +175C. The low profile small footprint package features an exposed die attach pad, for direct heat sinking to the circuit board.

Parameter	Min	Тур	Max	Units
Input Voltage (DC001-10)	4.5		48	Volts
Output Voltage (DC001-10)	3.0	3.3	3.6	Volts
Input Voltage (DC002-10)	6.2		48	Volts
Output Voltage (DC002-10)	4.5	5.0	5.5	Volts
Output Current			20	Milliamps
Bias Current at Zero Output Current			500	Microamps

Electrical characteristics @-40°C to +175°C, unless otherwise noted

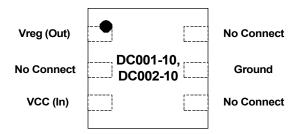
DC Series Voltage Regulators

Absolute maximum ratings *				
Parameter	Limit			
Input Voltage	60V			
Reverse Battery Voltage	-60V			
Output Current	25mA			
Junction Temperature Range, T _J	-40°C to +175°C			
Storage Temperature Range	-65 °C to +200 °C			

*Stresses beyond those listed under "Absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Electrical characteristics" is not implied.

Notes:

- 1. Power dissipation rating for TDFN6 package in free air is 320°C/Watt. Soldering the package to a PCB, including the die attach paddle, improves temperature performance substantially. The input voltage and output current are limited by thermal power dissipation at the package.
- 2. Due to package size, TDFN6 package contains 3-letter code to designate part type.


Part Numbers and Configurations:

Part Number	Regulated Output Voltage	Package	Marking
DC001-10	3.3V	TDFN6	FFB
DC002-10	5.0 V	TDFN6	FFC

Package:

Please see the package drawing section in the Appendix for dimensions of the TDFN6 package.

Pin Configuration:

Note: The die attach pad is exposed on the back of this package. NVE recommends that it is connected to the ground pin and the PCB to improve temperature performance of the part.

NVE Corporation	11409 Va	alley View Road,	Eden Prairie,	Minnesota	55344 USA
(800) 467-7141	Web: <u>w</u>	ww.nve.com	Email: info@	onve.com	11/15/02

DD Series Signal Processing ICs For use with ABL Series Sensors

Features:

- \Rightarrow Converts Analog Sensor to Digital Operation
- ⇒ 2 Wire Output
- \Rightarrow 50% Duty Cycle
- \Rightarrow DC (Zero Speed) Operation
- \Rightarrow Excellent Temperature and Voltage Performance
- ⇒ Small, Low Profile Surface Mount Package

Applications:

- \Rightarrow Linear and Angular Speed Sensing
- \Rightarrow Linear and Angular Position Sensing
- \Rightarrow Direction Detection

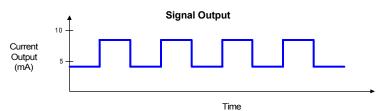
Description:

The DD series signal processing IC is designed to take an analog, sinusoidal input signal such as that provided by NVE's ABL series sensors, and convert it to a two wire, current modulated digital output. Inputs as small as 2mV peak to peak can be provided to the IC, along with large signal offsets; the DD001-12 part will provide a 50% duty cycle digital output signal.

The DD001-12 part contains a voltage regulator circuit, programmable amplifier, offset detection and correction circuitry, and an EEPROM for setting gain and current levels. The voltage regulator output (3.3V) is used to power the external sensor element; it should be connected between Vreg and V-. Nominal current levels for the current modulated output are 3mA and 10mA. These can be factory programmed to different levels for specific customer requirements.

Using the DD series signal processing IC allows the user to put the sensor element, which can very small, in a remote location, and pipe the signals from the sensor to the DD001-12 for digitizing purposes. In addition, if two phase shifted sensor outputs are available (such as with the ABL014-00 and ABL015-00 sensors), two DD001-12 parts can be used to provide two phase shifted digital signals, for the purpose of detecting the direction of the gear tooth or encoder wheel.

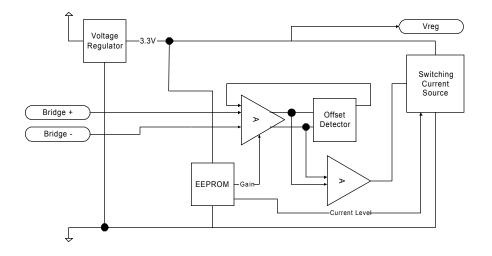
The 2-wire output of the DD001-12 can be easily converted to a 3-wire current sinking output with the circuit shown in the GT Sensor applications section.


NVE Corporation11409 Valley View Road, Eden Prairie, Minnesota 55344 USA(800) 467-7141Web: www.nve.comEmail: info@nve.com11/15/02

Specifications:

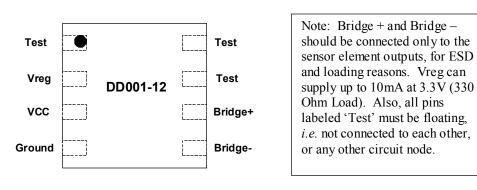
Property	Min	Тур	Max	Unit
Input Voltage	4.5		48	Volts ¹
Input Voltage Signal	2		200	mV ²
Input Current			10	μA
Supply Current – Off (Input Voltage=12V)	2.2	3.0	3.8	mA ³
Supply Current – On (Input Voltage=12V)	7.0	8.0	9.0	mA ³
Output Duty Cycle	40	50	60	%
Regulated Voltage Output	3.0	3.3	3.6	Volts
Current Supplied by Regulated Voltage Output			10	mA
Operating Temperature Range	-40		+125	°C
Frequency of Operation	0		10K	Hz
ESD		2000		V ⁴

Absolute Maximum Ratings				
Parameter	Limit			
Supply Voltage	60V			
Reverse Battery Voltage	-60V			
Continuous Output Current	16mA			
Junction Temperature Range	-40°C to +175°C			
Storage Temperature Range	-65°C to +200°C			


Notes:

- 1. The supply voltage must appear across the power and ground terminals of the part. Any additional voltage drop due to the presence of a series resistor is not included in this specification.
- 2. Input signal range can be adjusted by programming the amplifier gain to a specific value; contact NVE for details.
- 3. Supply currents can be factory programmed to different levels, for example 3mA and 6mA, or 7mA and 14mA; contact NVE for details.
- 4. Pin to pin voltage, Human Body Model for ESD.

Schematic:


A block representation of the DD series parts is shown below:

Packages:

The DD series parts are available in the TDFN SO8 package. Please see the package drawing section in this catalog for dimensions.

Pin Configuration:

TDFN-SO8 Package