

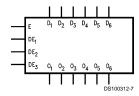
August 1998

100323

Low Power Hex Bus Driver

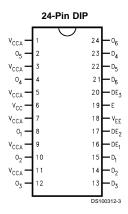
General Description

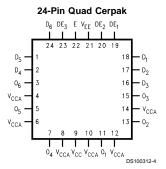
The 100323 is a monolithic device containing six bus drivers capable of driving terminated lines with terminations as low as 25Ω . To reduce crosstalk, each output has its own respective ground connection. Transition times were designed to be longer than on other F100K devices. The driver itself performs the positive logic AND of a data input (D_1-D_6) and the OR of two select inputs (E and either DE $_1$, DE $_2$, or DE $_3$). Enabling of data is possible in multiples of two, i.e., 2, 4 or all 6 paths. All inputs have 50 $k\Omega$ pull-down resistors.

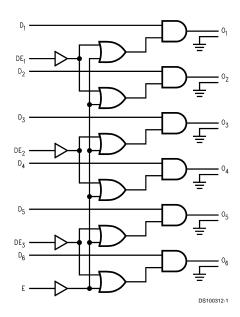

The output voltage LOW level is designed to be more negative than normal ECL outputs (cut off state). This allows an

emitter-follower output transistor to turn off when the termination supply is -2.0V and thus present a high impedance to the data bus.

Features


- 50% power reduction of the 100123
- 2000V ESD protection
- -4.2V to -5.7V operating range
- Drives 25Ω load


Logic Symbol


Pin Names	Description
D ₁ -D ₆	Data Inputs
D_1-D_6 DE_1-DE_3	Dual Enable Inputs
E	Common Enable Input
O ₁ -O ₆	Data Outputs

Connection Diagrams

Logic Diagram

Truth Table

E	DEn	D _n	D _{n+1}	O _n	O _{n+1}
L	L	Х	Х	X Cutoff	
X	Н	L	L	Cutoff	Cutoff
X	Н	L	Н	Cutoff	н
X	Н	Н	L	Н	Cutoff
X	Н	Н	Н	Н	н
Н	Х	L	L	Cutoff	Cutoff
Н	Х	L	Н	Cutoff	н
Н	Х	Н	L	Н	Cutoff
Н	Х	Н	Н	Н	н

H = High
Cutoff = Lower-than-LOW state
L = Low
X = Don't Care

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature -65°C to $+150^{\circ}\text{C}$

Maximum Junction Temperature

Ceramic +175°C

V_{EE} Pin Potential to Ground Pin -7.0V to +0.5V

ESD ≥2000V

Recommended Operating Conditions

Case Temperature

 $\begin{array}{ll} \mbox{Military} & -55\mbox{°C to } +125\mbox{°C} \\ \mbox{Supply Voltage (V}_{EE}) & -5.7\mbox{V to } -4.2\mbox{V} \end{array}$

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Military Version

DC Electrical Characteristics

 V_{EE} = -4.2V to -5.7V, V_{CC} = V_{CCA} = GND, T_{C} = -55°C to +125°C

Symbol	Parameter	Min	Max	Units	T _c	Conditions		Notes
V _{OH}	Output HIGH	-1025	-870	mV	0°C to +125°C	V _{IN} = V _{IH (max)}	Loading with	(Notes 3, 4, 5)
	Voltage	-1085	-870	mV	−55°C	or V _{IL (min)}	25Ω to -2.0V	
V _{OHC}	Output HIGH	-1035		mV	0°C to +125°C	$V_{IN} = V_{IH (min)}$	Loading with	(Notes 3, 4, 5)
	Voltage	-1085		mV	−55°C	or V _{IL (max)}	25Ω to –2.0V	
V _{OLC}	Output LOW		-1610	mV	0°C to +125°C			
	Voltage		-1555	MV	−55°C			
V _{OLZ}	Cut-Off LOW		-1950	mV	0°C to +125°C	V _{IN} = V _{IH (min)}	Loading with	(Notes 3, 4, 5)
	Voltage		-1850		−55°C	or V _{IL (max)}	25Ω to -2.0V	
V _{IH}	Input HIGH	-1165	-870	mV	-55°C to +125°C	Guaranteed HIGH Signal		(Notes 3, 4, 5, 6)
	Voltage					for All Inputs		
V _{IL}	Input LOW	-1830	-1475	mV	-55°C to +125°C	Guaranteed LOW Signal for All Inputs		(Notes 3, 4, 5, 6)
	Voltage							
I _{IL}	Input LOW	0.50		μΑ	-55°C to +125°C	$V_{EE} = 4.2V, V_{IN} = V_{IL (min)}$		(Notes 3, 4, 5)
	Current							
I _{IH}	Input HIGH		240	μΑ	0°C to +125°C	$V_{EE} = -5.7V$, $V_{IN} = V_{IH (max)}$		(Notes 3, 4, 5)
	Current		340	μA	−55°C			
I _{EE}	Power Supply					Inputs Open		
	Current	-155	-53	mA	-55°C to +125°C	$V_{EE} = -4.2V \text{ to } -4.2V$	(Notes 3, 4, 5)	

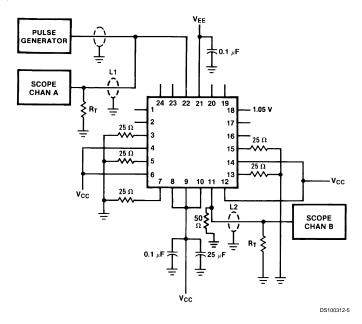
Note 3: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals -55°C), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.

Note 4: Screen tested 100% on each device at -55°C, +25°C, and +125°C, Subgroups 1, 2, 3, 7, and 8.

Note 5: Sample tested (Method 5005, Table I) on each manufactured lot at -55°C, +25°C, and +125°C, Subgroups A1, 2, 3, 7, and 8.

Note 6: Guaranteed by applying specified input condition and testing $V_{\mbox{OH}}/V_{\mbox{OL}}$.

AC Electrical Characteristics


 $V_{EE} = -4.2V \text{ to } -5.7V, V_{CC} = V_{CCA} = GND$

Symbol	Parameter	T _C = -55°C		T _C = +25°C		T _C = +125°C		Units	Conditions
		Min	Max	Min	Max	Min	Max		
t _{PZH}	Propagation Delay	0.70	3.70	1.10	3.60	1.20	3.60	ns	Figures 1, 2
t _{PHZ}	Data to Output	0.50	3.60	1.10	3.10	1.20	3.50		
t _{PZH}	Propagation Delay	0.60	3.60	1.10	3.60	1.30	3.80	ns	
t _{PHZ}	Data Enable to Output	1.00	4.20	1.50	3.60	1.60	4.00		
t _{PZH}	Propagation Delay	0.70	3.60	1.00	3.50	1.20	3.60	ns	
t _{PHZ}	Common Enable to Output	0.90	4.00	1.40	3.40	1.40	3.80		
t _{TZH}	Transition Time	0.20	2.00	0.20	2.00	0.20	2.00	ns	
t _{THZ}	20% to 80%, 80% to 20%	0.20	1.80	0.20	1.60	0.20	1.60		

Note 7: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Note 8: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Test Circuitry

Notes:

 V_{CC} , V_{CCA} = +2V, V_{EE} = -2.5V L1 and L2 = equal length 50Ω impedance lines

 $R_T = 50\Omega$ terminator internal to scope

Decoupling 0.1 μF from GND to V_{CC} and V_{EE}

All unused outputs are loaded with 25 $\!\Omega$ to GND

 C_L = Fixture and stray capacitance \leq 3 pF Pin numbers shown are for flatpak; for DIP see logic symbol

FIGURE 1. AC Test Circuit

Timing Waveform

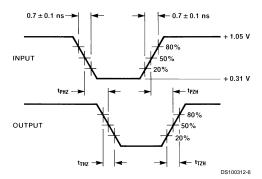
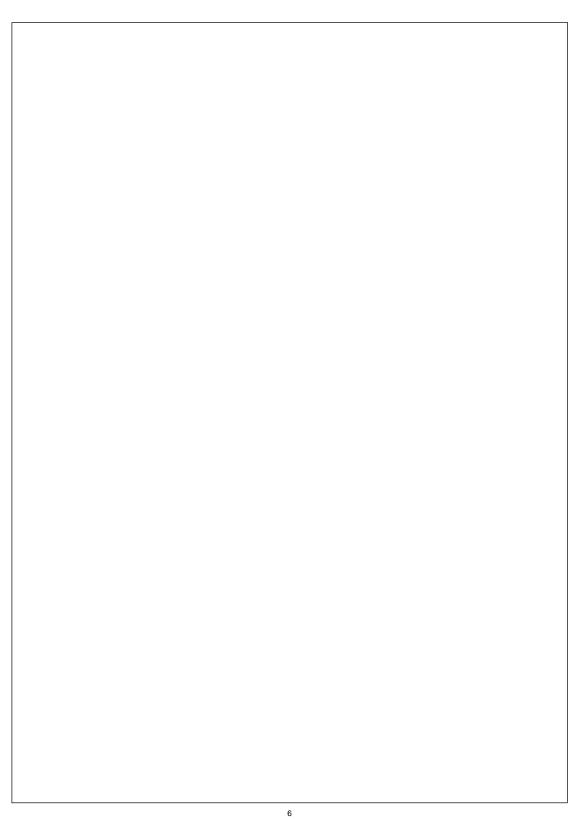
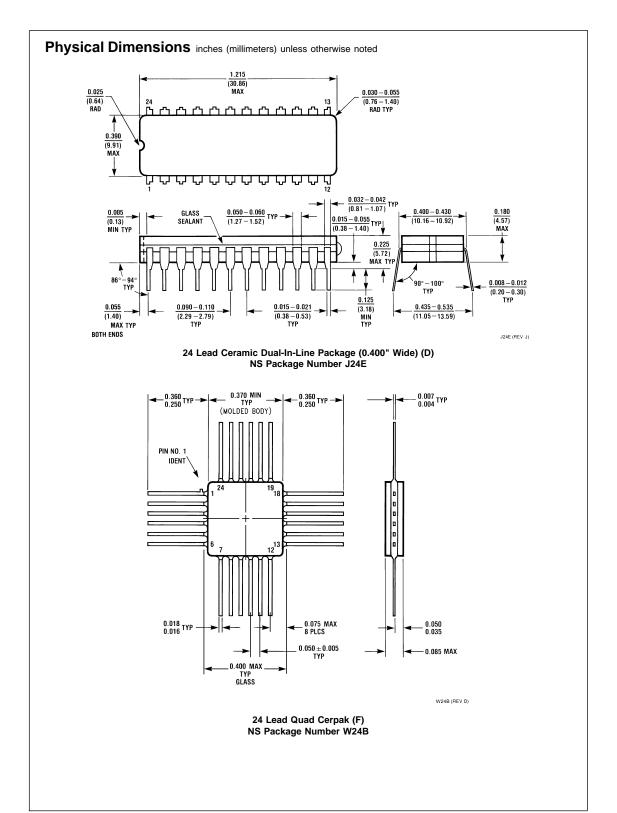




FIGURE 2. Propagation Delay and Transition Times

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMI-CONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation Americas

Fax: 1-800-737-7018 Email: support@nsc.com

www.national.com

National Semiconductor Europe

Fax: +49 (0) 1 80-530 85 86 Fax: +49 (0) 1 80-530 85 86
Email: europe support@nsc.com
Deutsch Tel: +49 (0) 1 80-530 85 85
English Tel: +49 (0) 1 80-532 78 32
Français Tel: +49 (0) 1 80-532 93 58
Italiano Tel: +49 (0) 1 80-534 16 80 National Semiconductor Asia Pacific Customer Response Group Fax: 65-2504466

Email: sea.support@nsc.com

National Semiconductor Japan Ltd. Tel: 81-3-5620-6175 Fax: 81-3-5620-6179