

XRD64L42

Dual 10-Bit 40MSPS CMOS ADC

October 2000-2

FEATURES

- 10-Bit Resolution
- Two Monolithic Complete 10-Bit ADCs
- 40 MSPS Conversion Rate
- On-Chip Track-and-Hold
- On-Chip Voltage Reference
- Low 5 pF Input Capacitance
- TTL/CMOS Outputs
- Tri-State Output Buffers
- Single +3.0V Power Supply Operation
- Low Power Dissipation: 200mW-typ @ 2.7V
- Power Down Mode Less Than 5mW
- -40°C to +85°C Operation Temperature Range

APPLICATIONS

- Medical Ultrasound Imaging
- I & Q Modems

BENEFITS

- Reduction of Components
- Reduction of System Cost
- High Performance @ Low Power Dissipation
- Long Term Time and Temperature Stability

GENERAL DESCRIPTION

The XRD64L42 is two 10-bit, monolithic, 40 MSPS ADCs. Manufactured using a standard CMOS process, the XRD64L42 offers low power, low cost and excellent performance. The on-chip track-and-hold amplifier(T/H) and voltage reference (VREF) eliminate the need for external active components, requiring only an external ADC conversion clock for the application. The XRD64L42 analog input can be driven with ease due to the high input impedance of RIN = 25KOhms and CIN = 5pF.

The design architecture uses 17 time- interleaved 10-bit SAR ADCs in each converter to achieve high conversion rate of 40 MSPS minimum. In order to insure and maintain accurate 10-bit operation with respect to time and temperature, XRD64L42 incorporates an auto-calibration circuit which continuously adjusts and matches the offset and linearity of each

ADC. This auto-calibration circuit is transparent to the user after the initial 3.4ms calibration (168,000 initial clock cycles).

The power dissipation is only 200mW at 40 MSPS with +2.7V power supply.

The digital output data is straight binary format, and the tri-state disable function is provided for common bus interface.

The XRD64L42 internal reference provides cost savings and simplifies the design/development. The output voltage of the internal reference is set by two external resistors. The internal reference can be disabled if an external reference is used for a power savings of 50mW.

ORDERING INFORMATION

Part Number	Package Type	Temperature Range
XRD64L42AIV	64-LeadTQFP	-40°C to +85°C

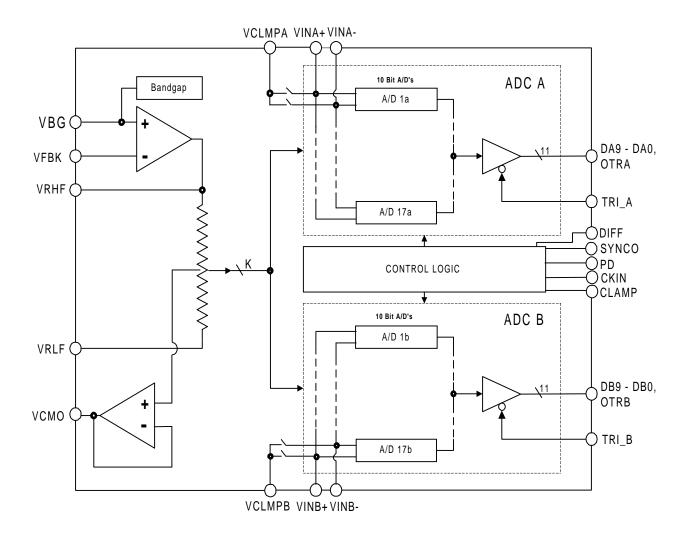
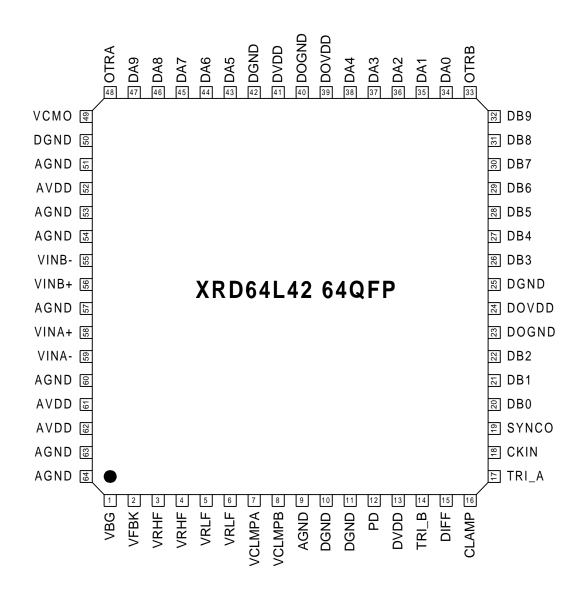



Figure 1. XRD64L42 Simplified Block Diagram

PIN DESCRIPTION

Pin #	Symbol	Description			
1	VBG	Bandgap Voltage Output			
2	VFBK	Analog Reference Feedback			
3	VRHF	Top Voltage Reference Force			
4	VRHF	Top Voltage Reference Force			
5	VRLF	Bottom Voltage Reference Force			
6	VRLF	Bottom Voltage Reference Force			
7	VCLMPA	Analog Input Clamp A			
8	VCLMPB	Analog Input Clamp B			
9	AGND	Analog Ground			
10	DGND	Digital Ground			
11	DGND	Digital Ground			
12	PD	Power Down			
13	DVDD	Digital Supply Voltage			
14	TRI_B	Tri-state for the B Channel Outputs			
15	DIFF	Differential / Single-Ended Input Mode			
16	CLAMP	Digital Clamp Control			
17	TRI_A	Tri-state for the A Channel Outputs			
18	CKIN	Clock Input			
19	SYNCO	Data Valid Output			
20	DB0	Digital Output Bit 0 (LSB) ADC B			
21	DB1	Digital Output Bit 1 ADC B			
22	DB2	Digital Output Bit 2 ADC B			
23	DOGND	Digital Output Ground			
24	DOVDD	Digital Output Supply Voltage			
25	DGND	Digital Ground			
26	DB3	Digital Output Bit 3 ADC B			
27	DB4	Digital Output Bit 4 ADC B			
28	DB5	Digital Output Bit 5 ADC B			
29	DB6	Digital Output Bit 6 ADC B			
30	DB7	Digital Output Bit 7 ADC B			
31	DB8	Digital Output Bit 8 ADC B			
32	DB9	Digital Output Bit 9 (MSB) ADC B			
33	OTRB	Over Range Digital Output Bit ADC B			
34	DA0	Digital Output Bit 0 (LSB) ADC A			
35	DA1	Digital Output Bit 1 ADC A			
36	DA2	Digital Output Bit 2 ADC A			
37	DA3	Digital Output Bit 3 ADC A			
38	DA4	Digital Output Bit 4 ADC A			
39	DOVDD	Digital Output Supply Voltage			
40	DOGND	Digital Output Ground			
41	DVDD	Digital Supply Voltage			

PIN DESCRIPTION (CONT'D)

Pin #	Symbol	Description			
42	DGND	Digital Ground			
43	DA5	Digital Output Bit 5 ADC A			
44	DA6	Digital Output Bit 6 ADC A			
45	DA7	Digital Output Bit 7 ADC A			
46	DA8	Digital Output Bit 8 ADC A			
47	DA9	Digital Output Bit 9 ADC A			
48	OTRA	Over Range Digital Output Bit ADC A			
49	VCMO	Differential Common Mode Voltage Output			
50	DGND	Digital Ground			
51	AGND	Analog Ground			
52	AVDD	Analog Supply Voltage			
53	AGND	Analog Ground			
54	AGND	Analog Ground			
55	VINB-	Analog Input B(-)			
56	VINB+	Analog Input B(+)			
57	AGND	Analog Ground			
58	VINA+	Analog Input A(+)			
59	VINA-	Analog Input A(-)			
60	AGND	Analog Ground			
61	AVDD	Analog Supply Voltage			
62	AVDD	Analog Supply Voltage			
63	AGND	Analog Ground			
64	AGND	Analog Ground			

Test Conditions (Unless Otherwise Specified)

 $T_A = 25$ °C AV_{DD} = DV_{DD} = +3.0V, VIN = GND to +2.5V, $V_{RLF} = GND$, $V_{RHF} = +2.5V$ and Fs = 40 MSPS, 50% Duty Cycle, Differential Input Mode

Symbol	Parameter	Min.	Тур.	Max.	Unit	Conditions
DC ACCURAC	CY					,
DNL	Differential Non-Linearity	-0.75	+/-0.25	.75	LSB	
INL	Integral Non-Linearity		+/-0.5		LSB	
MON	Monotonicity		No Mis	ssing Codes		Guaranteed by Test
FSE	Full Scale Error		<u>+</u> 10		mV	F.S. = (VRHF - VRLF)x0.97
ZSE	Zero Scale Error		5		mV	Single Ended Mode
ANALOG INP	UT					
INVR	Input Voltage Range	0		VRHFx0.97	V	VRLF Grounded
INRES	Input Resistance		20		KOhms	
INCAP	Input Capacitance		5		pF	
INBW	Input Bandwidth		400		MHz	-1dB Small Signal
REFERENCE	INPUT, INTERNAL BANDGA	P REFER	RENCE AN	ID REFEREN	CE BUFFER	₹
RLAD	Ladder Resistance	100	125	150	Ohms	
RLADTCO	Ladder Resistance Tempco		+0.8		Ohms/°C	
VBG	Bandgap Output Voltage Range	1.15	1.25	1.35	V	
VBGTC	Bandgap Reference Tempco		30		ppm/°C	
VRLF		0.0		2.0	V	
VRHF		VRLF+ 1.0		AVdd-0.3	V	Internal Reference Buffer
VRHF	External Reference	VRLF+ 1.0		AVdd	V	External
	Internal Reference Buffer		6		mV/V	
CONVERSION	AND TIMING CHARACTER	STICS (C	L = 10pF)			T
APJT	Aperture Jitter Time		12		ps	Peak-to Peak
t _r	Digital Output Rise Time		3		ns	
t _f	Digital Output Fall Time		3		ns	
^t pd	Output Data Propagation Delay		6	14	ns	Guaranteed by Design
^t den	Output Data Enable Delay		6	14	ns	Guaranteed by Design
^t dis	Output Data Disable Delay		5		ns	
CLKDC	Clock Duty Cycle	40	50	60	%	Guaranteed by Design

Test Conditions (Unless Otherwise Specified)

 $T_A = 25^{\circ}C$ AV_{DD} = DV_{DD} = +3.0V, VIN = GND to +2.5V, $V_{RLF} = GND$, $V_{RHF} = +2.5V$, 50% Duty Cycle, Differential **Input Mode**

Symbol	Parameter	Min.	Тур.	Max.	Unit	Conditions
DYNAMIC PE	RFORMANCE Fs = 40MHz	•				
SNR	Signal-to-Noise Ratio					Not Including Harmonics
	fin = 1.0 MHz	57	60		dB	
	fin = 4.0 MHz	57	60		dB	
	fin = 10.0 MHz	56	57		dB	
SINAD	Signal-to Noise and Distortion					
	fin = 1.0 MHz	56	58		dB	
	fin = 4.0 MHz	56	58		dB	
	fin = 10 MHz	56	57		dB	
ENOB EFFEC	TIVE NUMBER OF BITS	•			•	
	fin = 1.0 MHz	9.0	9.3		Bit	
	fin = 4.0 MHz	9.0	9.3		Bit	
	fin = 10 MHz	9.0	9.2		Bit	
SFDR SPURI	OUS FREE DYNAMIC RANG	GE			•	
SFDR	fin = 1.0 MHz	70			dB	
Crosstalk	fin = 1.0 MHz	75			dB	
IMD	fin ₁ = 2.5 MHz	70			dB	Intermodulation Distortion
	fin ₂ = 3.5 MHz					

Test Conditions (Unless Otherwise Specified)

 $T_A = 25$ °C AV_{DD} = DV_{DD} = +3.0V, VIN = GND to +2.5V, $V_{RLF} = GND$, $V_{RHF} = +2.5V$ and Fs = 40 MSPS, 50% Duty Cycle, Differential Input Mode

Symbol	Parameter	Min.	Тур.	Max.	Unit	Conditions	
DIGITAL INPU	DIGITAL INPUTS						
DVINH	Digital Input High Voltage	2.5			٧		
DVINL	Digital Input Low Voltage			0.5	V		
DIINH	Digital Input High Curren	t (The DIF	F input ha	s an intern	al pull-up r	esistor, TRI_A, TRI_B,	
	CLAMP and PD have inte	rnal pull-	down resis	tors			
CKIN	Clock Input	-1.0	0.05	1.0	μΑ		
DIFF	Differential/Single-Ended	-1.0	-0.25	1.0	uA		
	Input						
TRI_A/TRI_B	A/B Channel Tri-State	-125.0	-90.0	-50.0	uA		
DIINL	DIINL Digital Input Low Current (The DIFF input has an internal pull-up resistor, TRI_A, TRI_B,						
	CLAMP and PD have inte	rnal pull-	down resis	tors			
CKIN	Clock Input	-5.0	0.05	5.0	nA		
DIFF	Differential/Single-Ended	50.0	90.0	125.0	uA		
	Input						
TRI_A/TRI_B	A/B Channel Tri-State	-1.0	0.25	1.0	uA		
DINC	Digital Input capacitance		5	8	pF		
DIGITAL OUTPUTS (CL = 10 pF)							
DOHV	Digital Output High	DVdd	DVdd-		V	IOH = 1.5 mA	
	Voltage	-0.4V	0.3V				
DOLV	Digital Output Low		0.3	0.4	V	IOL = 1.5 mA	
	Voltage						
IOZ	High-Z Leakage	-100	0.2	100	nA		

Test Conditions (Unless Otherwise Specified)

 $T_A = 25$ °C AV_{DD} = DV_{DD} = +3.0V, VIN = GND to +2.5V, V_{RLF} = GND, V_{RHF} = +2.5V and Fs = 40 MSPS, 50% Duty Cycle, Differential Input Mode

Symbol	Parameter	Min.	Тур.	Max.	Unit	Conditions	
POWER SUPP	POWER SUPPLIES						
AV _{DD}	Analog Power Supply Voltage	2.7	3.0	3.3	V		
DV _{DD}	Digital Power Supply Range		AV _{DD}		V	$DV_{DD} = AV_{DD}$	
Fs = 40 MHz, /	$\overline{AV_{DD}} = \overline{DV_{DD}} = 2.7V, CL = 10r$	F, Fin = 1	0MHz (Inc	ludes Iref C	current)	·	
AIDD	Analog Supply Current		55		mA		
DIDD	Digital Supply Current		13		mA		
DOIDD	Output Driver Current		6		mA		
PDISS	Power Dissipation		225		mW		
Fs = 40 MHz, /	Fs = 40 MHz, AV _{DD} = DV _{DD} = 3.0V, CL = 10pF, Fin = 10MHz (Includes Iref Current)						
AIDD	Analog Supply Current		37		mA		
DIDD	Digital Supply Current		15		mA		
DOIDD	Output Driver Current		15		mA		
PDISS	Power Dissipation		200		mW		
POWER DOWN CURRENT							
IPD	Power Down Current		100		μΑ		

ABSOLUTE MAXIMUM RATINGS ($T_A = +25^{\circ}$ C unless otherwise noted)^{1, 2, 3}

V _{DD} to GND	+7.0V	Lead Temperature (Soldering 10 seconds) 300°C
V _{RT} & V _{RB}	V _{DD} +0.5 to GND -0.5V	Maximum Junction Temperature
	V _{DD} +0.5 to GND -0.5V	Package Power Dissipation Ratings (T _A =+70°C)
	V _{DD} +0.5 to GND -0.5V	SSOP $\theta_{JA} = 89.4^{\circ}$ C/W
	V _{DD} +0.5 to GND -0.5V	ESD
Storage Temperature	-65°C to 150°C	

Notes:

- Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation at or above this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
- Any input pin which can see a value outside the absolute maximum ratings should be protected by Schottky diode clamps (HP5082-2835) from input pin to the supplies. All inputs have protection diodes which will protect the device from short transients outside the supplies of less than 100mA for less than 100ms.
- $V_{\rm DD}$ refers to $AV_{\rm DD}$ and $DV^{\rm DD}$. GND refers to AGND and DGND

Figure 1 - SINAD vs. Fin and Vdd @ Fc = 40.0MHz, DIFFERENTIAL INPUT MODE Figure 2 - FFT Spectrum @Fclock = 40.0MHz, Fin = 4.0MHz, DIFFERENTIAL INPUT MODE

Figure 3 - FFT Spectrum @Fclock = 40.0MHz, Fin = 10.0MHz, DIFFERENTIAL INPUT MODE

Figure 4 - SINAD vs. Fin and Vdd @ Fc = 40.0MHz, SINGLE-ENDED INPUT MODE



Figure 5 - FFT Spectrum @Fclock = 40.0MHz, Fin = 4.0MHz, Single-ended INPUT MODE

Figure 6 - FFT Spectrum @Fclock = 40.0MHz, Fin = 10.0MHz, Single-ended INPUT MODE

NOTICE

EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contained here in are only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for in accuracies.

EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.

Copyright 2000 EXAR Corporation Datasheet October 2000

Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.