

1024K x 8 MoBL® Static RAM

Features

· Very high speed: 55 ns

— Wide voltage range: 2.20V – 3.60V

· Ultra-low active power

— Typical active current:1.5 mA @ f = 1 MHz

- Typical active current: 12 mA @ f = f_{max}(55-ns speed)

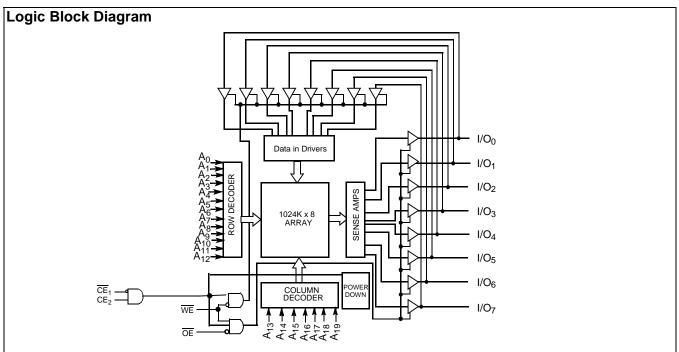
· Ultra-low standby power

• Easy memory expansion with \overline{CE}_1 , CE_2 , and \overline{OE} features

Automatic power-down when deselected

CMOS for optimum speed/power

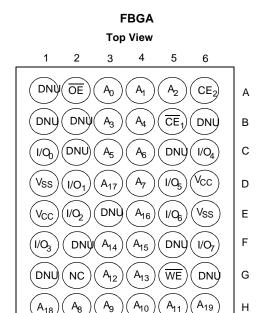
 Packages offered in a 48-ball BGA, 48-pin TSOPI, and 44-pin TSOPII


Functional Description^[1]

The CY62158DV is a high-performance CMOS static RAMs organized as 1024K words by 8 bits. This device features advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life™ (MoBL®) in portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly reduces power consumption by 80% when addresses are not toggling. The device can be put into standby mode reducing power consumption by more than 99% when deselected (CE₁ HIGH or CE2 LOW).

Writing to the device is accomplished by taking Chip Enable 1 (\overline{CE}_1) and Write Enable (\overline{WE}) inputs LOW and Chip Enable 2 (CE_2) HIGH. Data on the eight I/O pins (I/O_0) through I/O₇ is then written into the location specified on the address pins (A₀ through A₁₉).

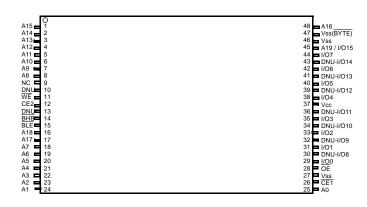
Reading from the device is accomplished by taking Chip Enable 1 (\overline{CE}_1) and Output Enable (\overline{OE}) LOW and Chip Enable 2 (CE₂) HIGH while forcing Write Enable (WE) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

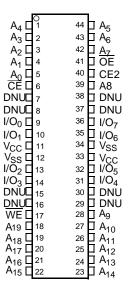

The eight input/output pins (I/O₀ through I/O₇) are placed in a high-impedance state when the device is deselected (CE₁ LOW and CE₂ HIGH), the outputs are disabled (OE HIGH), or during a write operation (CE₁ LOW and CE₂ HIGH and WE LOW). See the truth table at the back of this data sheet for a complete description of read and write modes.

Note:

1. For best practice recommendations, please refer to the Cypress application note entitled System Design Guidelines, available at http://www.cypress.com.

Pin Configuration^[2,3,4]




 A_8

48TSOPI (Forward) **Top View**

44 TSOPII (Forward) Top View

Н

NC pins are not connected on the die. DNU pins have to be left floating or tied to Vss to ensure proper application. The BYTE signal has to be tied to Vss to use the device as $1024K \times 8$ SRAM. The pin 45 will serve as the higher order address line (A₁₉). The upper byte data lines (I/O8 through I/O14) have to be left floating when used in the 1024K x 8 mode. The 48-TSOPI package can also be used as 512K x 16 SRAM by tying the BYTE signal to Vcc, please refer to the data sheet entitled CY62157DV 8M (512K x 16) Static RAM.

ADVANCE INFORMATION

CY62158DV MoBI

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied55°C to +125°C Supply Voltage to Ground Potential -0.2V to V_{cc} + 0.2VDC Voltage Applied to Outputs in High-Z State $^{[5]}$ -0.2V to $\rm V_{CC}$ + 0.2V

DC Input Voltage^[5].....-0.2V to V_{CC} + 0.2V

Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	>2001V
Latch-up Current	>200 mA

Operating Range

Product	Range	Ambient Temperature	V cc ^[6]
CY62158DVL	Industrial	-40°C to +85°C	2.2V to 3.6V
CY62158DVLL			

Product Portfolio

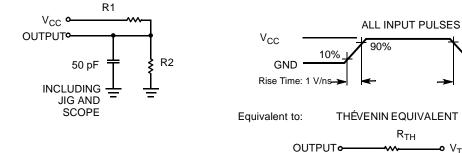
							Power	Dissipatio	n	
						Operati	ng (I _{CC})			
	'	V _{CC} Range			f = 1 MHz		f = f _{max}		Standby (I _{SB2})	
Product	Min.	Typ. ^[7]	Max.	Speed	Typ. ^[7]	Max.	Typ. ^[7]	Max.	Typ. ^[7]	Max.
CY62158DVL	2.2V	3.0V	3.6V	55 ns	1.5 mA	3 mA	12 mA	20 mA	2 μΑ	20 μΑ
CY62158DVLL	2.2V	3.0V	3.6V	55 ns	1.5 mA	3 mA	12 mA	15 mA	2 μΑ	8

Electrical Characteristics Over the Operating Range

					C	Y62158	DV-55	
Parameter	Description	Test Conditions			Min.	Typ. ^[7]	Max.	Unit
V _{OH}	Output HIGH Voltage	$I_{OH} = -0.1 \text{ mA}$	$V_{CC} = 2.20V$		2.0			V
		I _{OH} = -1.0 mA	$V_{CC} = 2.70V$		2.4			V
V _{OL}	Output LOW Voltage	I _{OL} = 0.1 mA	$V_{CC} = 2.20V$				0.4	V
		I _{OL} = 2.1mA	$V_{CC} = 2.70V$				0.4	V
V_{IH}	Input HIGH Voltage	$V_{CC} = 2.2V \text{ to } 2.7V$			1.8		V _{CC} + 0.3V	V
		V _{CC} = 2.7V to 3.6V			2.2		V _{CC} + 0.3V	V
V_{IL}		$V_{CC} = 2.2V \text{ to } 2.7V$			-0.3		0.6	V
Input LOW Voltage		V _{CC} = 2.7V to 3.6V	V _{CC} = 2.7V to 3.6V					V
I _{IX}	Input Leakage Current	$GND \le V_1 \le V_{CC}$	$GND \le V_1 \le V_{CC}$					μΑ
I _{OZ}	Output Leakage Current	$GND \le V_O \le V_{CC}$, Output Disa	abled		-1		+1	μΑ
I _{CC}	V _{CC} Operating Supply	$f = f_{MAX} = 1/t_{RC}$	V _{CC} =	L		12	20	mA
	Current		V_{CCmax} $I_{OUT} = 0 \text{ mA}$	LL			15	mA
		f = 1 MHz	CMOS levels	L		1.5	3	mA
				LL			3	mA
I _{SB1}	Automatic CE	$CE_1 \ge V_{CC} - 0.2V, CE_2 \le 0.2V$		L		2	20	μΑ
	Power-down Current — CMOS Inputs	$V_{IN} \ge V_{CC} - 0.2V$, $V_{IN} \le 0.2V$ $f = f_{MAX}$ (Address and Data C $f = 0$ (OE, and WE), $V_{CC} = 3$	Only),	LL	_	2	8	
I _{SB2}	Automatic CE	$\overline{CE}_1 \ge V_{CC} - 0.2V \text{ or } CE_2 \le 0.2V,$ L		L		2	20	μΑ
	Power-down Current — CMOS Inputs	$V_{IN} \ge V_{CC} - 0.2V \text{ or } V_{IN} \le 0.2$ f = 0, $V_{CC} = 3.60V$	2V,	LL		2	8	

- V_{IL(min.)} = -2.0V for pulse durations less than 20 ns.
 Full device AC operation requires linear Vcc ramp from 0 to Vcc(min) >= 500 μs.
 Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ.)}, T_A = 25°C.

Fall time: 1 V/ns


Capacitance^[8]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25 \hat{u}C, f = 1 \text{ MHz},$	6	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ.)}$	8	pF

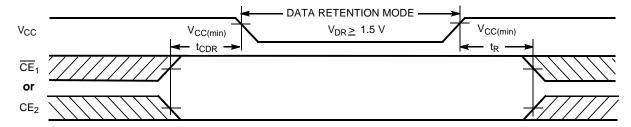
Thermal Resistance

Parameter	Description	Test Conditions	BGA	TSOP II	TSOP I	Unit
Θ_{JA}		Still Air, soldered on a 3 x 4.5 inch, two-layer printed circuit board	55	TBD	TBD	°C/W
Θ _{JC}	Thermal Resistance ^[8] (Junction to Case)		16	TBD	TBD	°C/W

AC Test Loads and Waveforms

Parameters	2.50V	3.0V	Unit
R1	16667	1103	Ω
R2	15385	1554	Ω
R _{TH} 8000		645	Ω
V _{TH}	1.20	1.75	V

Data Retention Characteristics (Over the Operating Range)


Parameter	Description	scription Conditions			Typ. ^[7]	Max.	Unit
V_{DR}	V _{CC} for Data Retention			1.5		2.2V	V
I _{CCDR}	Data Retention Current	$\underline{V_{CC}} = 1.5V$	L			10	μΑ
			LL			4	μΑ
t _{CDR} ^[8]	Chip Deselect to Data Retention Time			0			ns
t _R ^[9]	Operation Recovery Time			t _{RC}			ns

Notes:

Tested initially and after any design or process changes that may affect these parameters. Full Device AC operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min.)} \ge 100 \,\mu s$ or stable at $V_{CC(min.)} \ge 100 \,\mu s$.

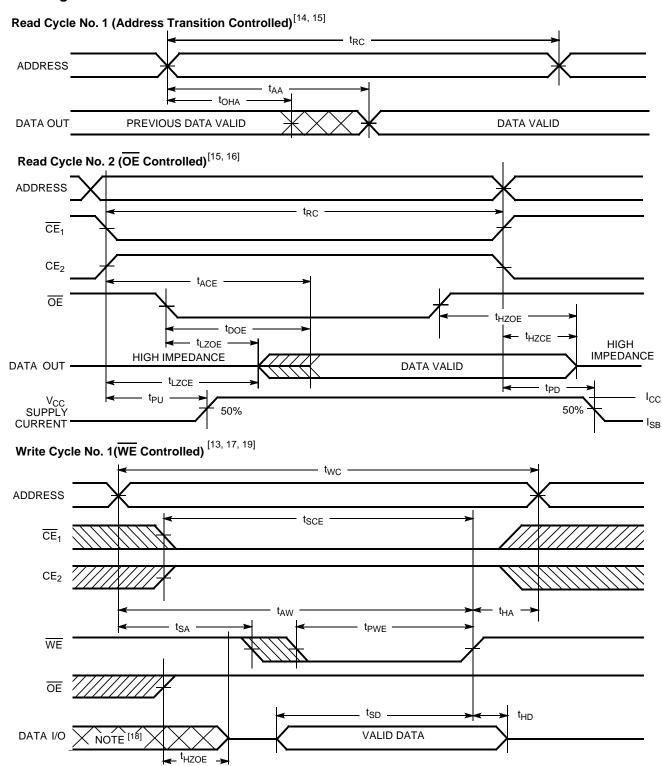
Data Retention Waveform

Switching Characteristics Over the Operating Range^[10]

	55			
Description	Min.	Max.	Unit	
	•	1		
Read Cycle Time	55		ns	
Address to Data Valid		55	ns	
Data Hold from Address Change	10		ns	
CE ₁ LOW and CE ₂ HIGH to Data Valid		55	ns	
OE LOW to Data Valid		25	ns	
	5		ns	
OE HIGH to High Z ^[11, 12]		20	ns	
CE ₁ LOW and CE ₂ HIGH to Low Z ^[11]	10		ns	
CE ₁ HIGH or CE ₂ LOW to High Z ^[11, 12]		20	ns	
CE ₁ LOW and CE ₂ HIGH to Power-Up	0		ns	
CE ₁ HIGH or CE ₂ LOW to Power-Down		55	ns	
	•		•	
Write Cycle Time	55		ns	
CE ₁ LOW and CE ₂ HIGH to Write End	40		ns	
Address Set-Up to Write End	40		ns	
Address Hold from Write End	0		ns	
Address Set-Up to Write Start	0		ns	
WE Pulse Width	40		ns	
Data Set-Up to Write End	25		ns	
Data Hold from Write End	0		ns	
WE LOW to High Z ^[11, 12]		20	ns	
WE HIGH to Low Z ^[11]	10		ns	
	Read Cycle Time Address to Data Valid Data Hold from Address Change CE1 LOW and CE2 HIGH to Data Valid OE LOW to Data Valid OE LOW to Low Z[11] OE HIGH to High Z[11, 12] CE1 LOW and CE2 HIGH to Low Z[11] CE1 HIGH or CE2 LOW to High Z[11, 12] CE1 LOW and CE2 HIGH to Power-Up CE1 HIGH or CE2 LOW to Power-Down Write Cycle Time CE1 LOW and CE2 HIGH to Write End Address Set-Up to Write End Address Set-Up to Write Start WE Pulse Width Data Set-Up to Write End Data Hold from Write End WE LOW to High Z[11, 12]	Description Min. Read Cycle Time 55 Address to Data Valid 10 Data Hold from Address Change 10 CE₁ LOW and CE₂ HIGH to Data Valid 10 OE LOW to Low Z[11] 5 OE HIGH to High Z[11, 12] 10 CE₁ LOW and CE₂ HIGH to Low Z[11] 10 CE₁ HIGH or CE₂ LOW to High Z[11, 12] 10 CE₁ LOW and CE₂ HIGH to Power-Up 0 CE₁ HIGH or CE₂ LOW to Power-Down 0 Write Cycle Time 55 CE₁ LOW and CE₂ HIGH to Write End 40 Address Set-Up to Write End 40 Address Hold from Write End 0 Address Set-Up to Write Start 0 WE Pulse Width 40 Data Set-Up to Write End 25 Data Hold from Write End 0 WE LOW to High Z[11, 12]	Read Cycle Time	

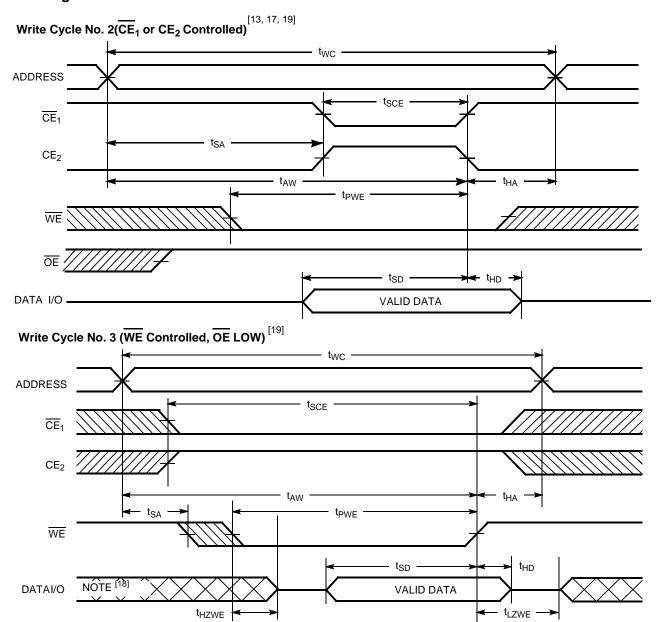
^{10.} Test conditions for all parameters other than tri-state parameters assume signal transition time of 3ns or less (1V/ns), timing reference levels of V_{CC(typ.)}/2,

input pulse levels of 0 to V_{CC(typ.)}, and output loading of the specified I_{OL}/I_{OH} as shown in the "AC Test Loads and Waveforms" section.


11. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZCE}, and t_{HZWE} is less than t_{LZWE} for any given device.

12. t_{HZOE}, t_{HZCE}, and t_{HZWE} transitions are measured when the outp<u>uts enter</u> a high impedance state.

13. The internal write time of the memory is defined by the overlap of WE, CE₁ = V_{IL}, and CE₂ = V_{IH}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input set-up and hold timing should be referenced to the edge of the signal that terminates the write.


Switching Waveforms

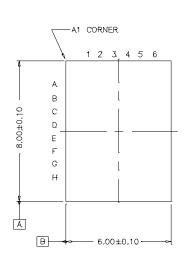
- 14. <u>Device</u> is continuously selected. \overline{OE} , $\overline{CE}_1 = V_{IL}$, $CE_2 = V_{IH}$.
- 15. WE is HIGH for read cycle.
- 16. Address valid prior to or coincident with $\overline{\text{CE}}_1$ transition LOW and CE_2 transition HIGH.

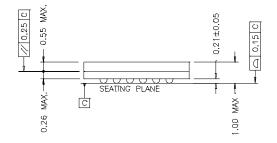
Switching Waveforms

Truth Table

CE ₁	CE ₂	WE	OE	Inputs/Outputs	Mode	Power
Н	Х	Х	Х	High Z	Deselect/Power-down	Standby (I _{SB})
Х	L	Х	Х	High Z	Deselect/Power-down	Standby (I _{SB})
L	Н	Н	L	Data Out (I/O ₀ -I/O ₇)	Read	Active (I _{CC})
L	Н	Н	Н	High Z	Output Disabled	Active (Icc)
L	Н	L	Х	Data in (I/O ₀ -I/O ₇)	Write	Active (Icc)

- 17. Data I/O is high impedance if OE = V_{IH}.
 18. During this period, the I/Os are in output state and input signals should not be applied.
 19. If CE₁ goes HIGH or CE₂ goes LOW simultaneously with WE HIGH, the output remains in high-impedance state.




Ordering Information

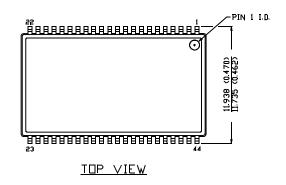
Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
55	CY62158DVL-55BVI	BV48A	48-ball Fine Pitch BGA (6 mm × 8mm × 1 mm)	Industrial
	CY62158DVLL-55BVI			
55	CY62158DVL-55ZI	Z-48	48 Pin TSOP I	Industrial
	CY62158DVLL-55ZI			
55	CY62158DVL-55ZSI	ZS-44	44 Pin TSOP II	Industrial
	CY62158DVLL-55ZSI			

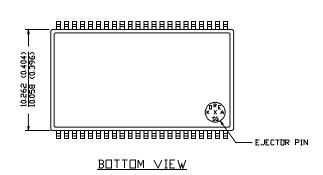
Package Diagrams

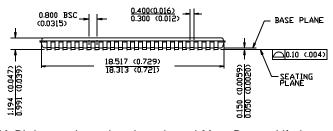
48-lead VFBGA (6 x 8 x 1 mm) BV48A A1 CORNER Ø0.05 (M) C Ø0.25 M C A B Ø0.30±0.05(48X) -9 0 0 0 0 0 -9 0 0 0 0 0 C 0.75 8.00±0,10 000000 D 00000 Е 000000 G \oplus \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc -- [1.875] -A 0.75 3.75 В 6.00±0.10 □ 0.15(4X)

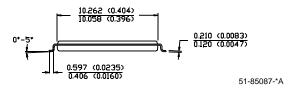
BOTTOM VIEW

51-85150-*B


Package Diagrams(continued)






DIMENSION IN MM (INCH)

MAX
MIN.

MoBL is a registered trademark, and More Battery Life is a trademark, of Cypress Semiconductor. All product and company names mentioned in this document are trademarks of their respective holders.

ADVANCE INFORMATION

Document History Page

	Document Title:CY62158DV MoBL® 1024K x 8 MoBL® Static RAM Document Number: 38-05391							
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change				
**	126293	05/22/03	HRT	New Data Sheet				