ChipFind - Datasheet

Part Number PC812

Download:  PDF   ZIP
PC812
PC812
s
Features
1. High noise reduction
2. High current transfer ratio
3. High isolation voltage between input and
4. Compact dual-in-line package
s
Applications
1. Motor-control circuits
2. Computer terminals
3. System appliances, measuring instruments
4. Signal transmission between circuits of
different potentials and impedances
*3 For 10 seconds
( Unit : mm)
( Common mode rejection voltage
V
CM
( CTR : MIN. 90% at I
F
= 5mA, V
CE
= 5V)
output ( V
iso
s
Absolute Maximum Ratings
Parameter
Symbol
Rating
Unit
Input
Forward current
I
F
50
mA
*1
Peak forward current
I
FM
1
A
Reverse voltage
V
R
6
V
Power dissipation
P
70
mW
Output
Collector-emitter voltage
V
CEO
35
V
Emitter-collector voltage
V
ECO
6
V
Collector current
I
C
50
mA
Collector power dissipation
P
C
150
mW
Total power dissipation
*2
Isolation voltage
Operating temperature
Storage temperature
*3
Soldering temperature
P
tot
200
mW
V
iso
T
opr
- 30 to + 100
°C
T
stg
- 55 to + 125
°C
T
sol
260
°C
*1 Pulse width <=100
µ
s, Duty ratio : 0.001
data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.
"
"
In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs,
R
L
= 470
, V
np
= 100mV )
Anode mark
CTR rank mark
PC812
Internal connection
diagram
1
2
3
4
4
3
2
1
0.5TYP.
1 Anode
2 Cathode
3 Emitter
4 Collector
Photocoupler
(T
a
= 25°C)
High Noise Resistance Type
s
Outline Dimensions
4.58
±
0.5
5 000
*2 40 to 60% RH, AC for 1 minute
: TYP. 1.5kV at d
V
/dt = 2kV/
µ
s,
: 5 000V
rms
)
V
rms
7.62
±
0.3
=
0 to 13
°
6.5
±
0.5
2.54
±
0.25
0.9
±
0.2
1.2
±
0.3
3.5
±
0.5
3.0
±
0.5
0.5
±
0.1
0.26
±
0.1
PC812
Parameter
Symbol
Conditions
MIN.
T Y P .
M A X .
Unit
Input
Forward voltage
V
F
-
1.2
1.4
V
Peak forward voltage
V
F M
-
-
3.0
V
Reverse current
I
R
-
-
10
µ
A
Terminal capacitance
C
t
-
30
p F
Output
Collector dark current
I
CEO
-
-
10
- 7
A
Transfer
charac-
teristics
C T R
90
-
480
%
Collector-emitter saturation voltage V
CE ( sat )
-
0.1
0.2
V
Isolation resistance
R
ISO
5 x 10
10
10
11
-
Floating capacitance
C
f
-
0.6
1.0
p F
Cut-off frequency
f
c
15
80
-
k H z
t
r
-
4
18
µ
s
t
f
-
5
20
µ
s
V
CM
-
1.5
-
k V
*4 Classification table of current transfer ratio is shown below.
*5 Test Circuit for V
CM
V
CM
R
L
Vnp
V
CC
=
9V
V
CM
:
Common mode rejection
Test condition
V
np
=
100mV, R
L
=
470
s
Electro-optical Characteristics
(Ta = 25°C)
Model
No.
R a n k
mark
CTR ( % )
t
r
t
T Y P . M A X . T Y P . M A X .
PC812A
A
90 to 180
3
14
4
16
PC812B
B
150 to 180
4
16
5
18
PC812C
C
240 to 480
5
18
7
20
PC812
A , B o r C 90 to 480
4
18
5
20
Measurement
conditions
V
CE
= 2V
I
C
= 2mA
R
L
= 100
I
F
= 20mA
I
F M
= 0.5A
V
R
= 4V
V = 0, f = 1kHz
V
CE
= 20V, I
F
= 0
I
F
= 5 m A , V
CE
= 5V
I
F
= 20mA, I
C
= 1mA
V = 0, f = 1MHz
V
CE
= 2V, I
C
= 2mA, R
L
= 100
L
= 470
, V
np
= 100mV, I
F
= 0
voltage
(higher value of pulse wave)
*4
Current transfer ratio
*5
Common mode rejection voltage
V
CE
= 5V, I
C
= 2mA, R
L
= 100
, - 3dB
Rise time
Fall time
*4
Response time
0
- 30
10
0
25
50
75
100
125
20
30
40
50
60
Fig. 1 Forward Current vs.
Ambient Temperature
Ambient temperature T
a
(°C)
0
0
125
100
200
50
150
25
50
75
100
Ambient Temperature
- 30
Forward current I
F
(
mA
)
Collector power dissipation P
C
(
mW
)
I = 5mA
T
a
= 25°C
T
a
= 25°C
Ambient temperature T
a
( °C )
(
µ
s)
(
µ
s)
f
V
CE
= 5V
DC500V, 40 to 60% RH
200
d
V
/dt = 2kV/
µ
s, R
d
V
/dt
:
Rising factor of voltage
Fig. 2 Collector Power Dissipation vs.
d
V
/dt
=
2kV/
µ
s, I
F
=
0
PC812
0
0
5
1
10
15
20
25
30
35
40
2
3
4
5
6
7
8
9
10
20mA
10mA
5 m A
Fig. 6 Collector Current vs.
Collector-emitter Voltage
Duty ratio
5
5
10 000
10
20
100
50
200
500
1 000
2 000
5 000
2
5
2
5
2
5
Fig. 3 Peak Forward Current vs. Duty Ratio
0
1
Current transfer ratio CTR
(
%
)
500
2
5
10
20
50
400
300
200
100
Forward current I
F
( mA )
100
0
50
150
0
25
50
75
Relative current transfer ratio
(
%
)
Fig. 7 Relative Current Transfer Ratio vs.
Ambient Temperature
Peak forward current I
FM
(
mA
)
Fig. 5 Current Transfer Ratio vs.
Forward Current
Collector-emitter voltage V
CE
(V)
Fig. 8 Collector-emitter Saturation Voltage
vs. Ambient Temperature
Ambient temperature T
a
(°C)
0
2
0.5
1.0
1.5
2.0
2.5
3.0
3.5
5
10
20
50
100
200
500
1
Forward voltage V
F
(V)
F
(
mA
)
Fig. 4 Forward Current vs. Forward Voltage
Pulse width <=100
µ
s
Forward current I
- 30
0
- 30
0.02
0
20
40
60
80
100
0.04
0.06
0.08
0.10
0.12
0.14
0.16
Collector emitter saturation voltage V
CE
( sat
)
(
V
)
Ambient temperature T
a
(°C)
100
125
50°C
25°C
0°C
- 25°C
T
a
= 75°C
Collector current I
C
(mA
)
1
10
-3
10
- 2
10
- 1
T
a
= 25°C
I
F
= 30mA
T
a
= 25°C
P
C
( MAX.)
V
CE
= 5V
T
a
= 25°C
I
F
= 5mA
V
CE
= 5V
I
F
= 20mA
I
C
= 1mA
PC812
20
0
40
60
80
5
5
5
5
5
5
100
Fig. 9 Collector Dark Current vs.
Ambient Temperature
Fig.11 Frequency Response
Frequency f ( kHz )
0
0.5
1
2
5
200
100
50
20
10
500
100
1k
Collector dark current I
CEO
(A
)
Ambient temperature T
a
(°C)
Voltage gain A
v
(
dB
)
L
( k
)
Response time
(
µ
s
)
0.2
0.1
0.5
1
2
5
10
20
0.01
0.1
1
10
50
50
100
200
500
0
0
2
4
6
8
2
4
6
8
10
1mA
3mA
7
5
3
1
9
7
5
3
1
5mA
7mA
Collector-emitter saturation voltage V
CE
( sat
)
(V
)
Forward current I
F
( mA )
Test Circuit for Response Time
V
CC
t
t
r
t
s
90
%
10
%
t
d
Output
Input
R
L
Input
Output
R
D
V
CC
R
L
Output
R
D
Test Circuit for Frepuency Response
Please refer to the chapter
Fig.12 Collector-emitter Saturation Voltage vs.
Forward Current
- 30
- 5
- 10
- 15
- 20
f
V
CE
= 20V
120 140
10
- 7
10
- 6
10
- 8
10
- 9
10
- 10
10
- 11
10
- 12
V
CE
= 2V
I
C
= 2mA
T
a
= 25°C
t
f
t
r
t
d
t
s
R
L
= 10k
V
CE
= 5V
I
C
= 2mA
T
a
= 25°C
T
a
= 25°C
I
C
= 0.5mA
" Precautions for Use "
Fig.10 Response Time vs. Load Resistance
Load resistance R
q