ChipFind - Datasheet

Part Number MC74LCX14

Download:  PDF   ZIP
©
Semiconductor Components Industries, LLC, 2000
December, 2000 ­ Rev. 1
1
Publication Order Number:
MC74LCX14/D
MC74LCX14
Low Voltage CMOS
Hex Schmitt Inverter With 5
V-Tolerant Inputs
The MC74LCX14 is a high performance hex inverter with
Schmitt­Trigger inputs operating from a 2.3 to 3.6 V supply. High
impedance TTL compatible inputs significantly reduce current loading to
input drivers, while TTL compatible outputs offer improved switching
noise performance. A V
I
specification of 5.5 V allows MC74LCX14
inputs to be safely driven from 5 V devices.
Pin configuration and function are the same as the MC74LCX04, but
the inputs have hysteresis and, with its Schmitt trigger function, the
LCX14 can be used as a line receiver which will receive slow input
signals.
·
Designed for 2.3 V to 3.6 V V
CC
Operation
·
5 V Tolerant Inputs ­ Interface Capability With 5 V TTL Logic
·
LVTTL Compatible
·
LVCMOS Compatible
·
24 mA Balanced Output Sink and Source Capability
·
Near Zero Static Supply Current (10
mA) Substantially Reduces
System Power Requirements
·
Latchup Performance Exceeds 500 mA
·
Current Drive Capability is 24 mA at Source/Sink
·
Pin and Function Compatible with Other Standard Logic Families
·
ESD Performance: HBM > 2000 V; Machine Model > 100 V
·
Chip Complexity: 41 Equivalent Gates
http://onsemi.com
Device
Package
Shipping
ORDERING INFORMATION
MC74LCX14D
SO­14
55 Units/Rail
MC74LCX14DR2
SO­14
MC74LCX14DT
TSSOP­14
2500 Units/Reel
96 Untis/Rail
TSSOP­14
DT SUFFIX
CASE 948G
14
1
SOIC EIAJ­14
M SUFFIX
CASE 965
14
1
SO­14
D SUFFIX
CASE 751A
14
1
MARKING
DIAGRAMS
1
7
8
14
1
14
8
7
8
14
7
1
LCX
14
AWLYWW
LCX14
ALYW
LCX14
AWLYWW
A
=Assembly Location
WL or L
= Wafer Lot
Y
= Year
WW or W = Work Week
MC74LCX14DTR2
TSSOP­14
2500 Units/Reel
MC74LCX14M
SOIC
EIAJ­14
50 Units/Rail
MC74LCX14MEL
SOIC
EIAJ­14
2000 Units/Reel
MC74LCX14
http://onsemi.com
2
Y1
A1
A2
A3
A4
A5
A6
Y2
Y3
Y4
Y5
Y6
1
3
5
9
11
13
2
4
6
8
10
12
Y = A
13
14
12
11
10
9
8
2
1
3
4
5
6
7
V
CC
A6
Y6
A5
Y5
A4
Y4
A1
Y1
A2
Y2
A3
Y3
GND
PIN NAMES
Function
Data Inputs
Outputs
Pins
An
Yn
TRUTH TABLE
Inputs
Outputs
L
H
H
L
A
Y
Figure 1. Pinout: 14­Lead (Top View)
Figure 2. Logic Diagram
ABSOLUTE MAXIMUM RATINGS*
Symbol
Parameter
Value
Condition
Unit
V
CC
DC Supply Voltage
­0.5 to +7.0
V
V
I
DC Input Voltage
­0.5
V
I
+7.0
V
V
O
DC Output Voltage
­0.5
V
O
V
CC
+ 0.5
Output in HIGH or LOW State. (Note 1.)
V
I
IK
DC Input Diode Current
­50
V
I
< GND
mA
I
OK
DC Output Diode Current
­50
V
O
< GND
mA
+50
V
O
> V
CC
mA
I
O
DC Output Source/Sink Current
±
50
mA
I
CC
DC Supply Current Per Supply Pin
±
100
mA
I
GND
DC Ground Current Per Ground Pin
±
100
mA
T
STG
Storage Temperature Range
­65 to +150
°
C
* Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or
conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute­maximum­rated conditions
is not implied.
1. I
O
absolute maximum rating must be observed.
MC74LCX14
http://onsemi.com
3
RECOMMENDED OPERATING CONDITIONS
Symbol
Parameter
Min
Typ
Max
Unit
V
CC
Supply Voltage
Operating
Data Retention Only
2.0
1.5
2.5 to 3.3
3.6
3.6
V
V
I
Input Voltage
0
5.5
V
V
O
Output Voltage
(HIGH or LOW State)
0
V
CC
V
I
OH
HIGH Level Output Current
V
CC
= 3.0V­3.6V
V
CC
= 2.7V­3.0V
V
CC
= 2.3V­2.7V
­24
­12
­8
mA
I
OL
LOW Level Output Current
V
CC
= 3.0V­3.6V
V
CC
= 2.7V­3.0V
V
CC
= 2.3V­2.7V
+24
+12
+8
mA
T
A
Operating Free­Air Temperature
­40
+85
°
C
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
DC ELECTRICAL CHARACTERISTICS
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
T
A
= ­ 40 to 85
°
C
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
Symbol
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
Characteristic
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
Condition
ÎÎÎÎ
ÎÎÎÎ
Min
ÎÎÎÎ
ÎÎÎÎ
Max
ÎÎÎ
ÎÎÎ
Unit
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
V
T+
ÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎ
Positive Input Threshold Voltage
(Figure 3)
ÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎ
V
CC
= 2.5V
V
CC
= 3.0V
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
0.9
1.2
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
1.7
2.2
ÎÎÎ
Î
Î
Î
ÎÎÎ
V
ÎÎÎÎ
ÎÎÎÎ
V
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
Negative Input Threshold Voltage
(Figure 3)
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
V
CC
= 2.5V
V
CC
= 3.0V
ÎÎÎÎ
ÎÎÎÎ
0.4
0.6
ÎÎÎÎ
ÎÎÎÎ
1.1
1.5
ÎÎÎ
ÎÎÎ
V
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
V
H
ÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎ
Input Hysteresis Voltage
(Figure 3)
ÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎ
V
CC
= 2.5V
V
CC
= 3.0V
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
0.3
0.4
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
1.0
1.2
ÎÎÎ
Î
Î
Î
ÎÎÎ
V
ÎÎÎÎ
ÎÎÎÎ
V
OH
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
HIGH Level Output Voltage
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
2.3 V
V
CC
3.6 V; I
OL
= 100
µ
A
ÎÎÎÎ
ÎÎÎÎ
V
CC
­ 0.2
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
V
ÎÎÎÎ
ÎÎÎÎ
OH
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
g
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
V
CC
= 2.3 V; I
OH
= ­8 mA
ÎÎÎÎ
ÎÎÎÎ
1.8
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
V
CC
= 2.7 V; I
OH
= ­12 mA
ÎÎÎÎ
ÎÎÎÎ
2.2
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
V
CC
= 3.0 V; I
OH
= ­18 mA
ÎÎÎÎ
ÎÎÎÎ
2.4
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
V
CC
= 3.0 V; I
OH
= ­24 mA
ÎÎÎÎ
ÎÎÎÎ
2.2
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
V
OL
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
LOW Level Output Voltage
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
2.3 V
V
CC
3.6 V; I
OL
= 100
µ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
0.2
ÎÎÎ
ÎÎÎ
V
ÎÎÎÎ
ÎÎÎÎ
OL
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
g
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
V
CC
= 2.3 V; I
OL
= 8 mA
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
0.3
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
V
CC
= 2.7 V; I
OL
= 12 mA
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
0.4
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
V
CC
= 3.0 V; I
OL
= 16 mA
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
0.4
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
V
CC
= 3.0 V; I
OL
= 24 mA
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
0.55
ÎÎÎ
ÎÎÎ
I
I
Input Leakage Current
2.3 V
V
CC
3.6 V; 0 V
V
I
5.5 V
±
5.0
µ
A
ÎÎÎÎ
ÎÎÎÎ
I
CC
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
Quiescent Supply Current
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
2.3
V
CC
3.6 V; V
I
= GND or V
CC
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
10
ÎÎÎ
ÎÎÎ
µ
A
ÎÎÎÎ
ÎÎÎÎ
CC
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
y
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
2.3
V
CC
3.6 V; 3.6
V
I
or V
O
5.5 V
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
±
10
ÎÎÎ
ÎÎÎ
µ
I
CC
Increase in I
CC
per Input
2.3
V
CC
3.6 V; V
IH
= V
CC
­ 0.6 V
500
µ
A
MC74LCX14
http://onsemi.com
4
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
AC ELECTRICAL CHARACTERISTICS
(Input t
r
= t
f
= 2.5 ns)
Limits
Unit
T
A
= ­40
°
C to +85
°
C
V
CC
= 3.3 V
±
0.3 V
V
CC
= 2.7 V
V
CC
= 2.5 V
±
0.2 V
C
L
= 50 pF
C
L
= 50 pF
C
L
= 30 pF
Symbol
Parameter
Waveform
Min
Max
Min
Max
Min
Max
t
PLH
t
PHL
Propagation Delay
Input to Output
1
1.5
1.5
6.5
6.5
1.5
1.5
7.5
7.5
1.5
1.5
7.8
7.8
ns
t
OSHL
t
OSLH
Output­to­Output Skew
(Note 2.)
1.0
1.0
ns
2. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device.
The specification applies to any outputs switching in the same direction, either HIGH­to­LOW (t
OSHL
) or LOW­to­HIGH (t
OSLH
); parameter
guaranteed by design.
DYNAMIC SWITCHING CHARACTERISTICS
T
A
= +25
°
C
Symbol
Characteristic
Condition
Min
Typ
Max
Unit
V
OLP
Dynamic LOW Peak Voltage
(Note 3.)
V
CC
= 3.3 V, C
L
= 50 pF, V
IH
= 3.3 V, V
IL
= 0 V
V
CC
= 2.5 V, C
L
= 30 pF, V
IH
=2.5 V, V
IL
= 0 V
0.8
0.6
V
V
OLV
Dynamic LOW Valley Voltage
(Note 3.)
V
CC
= 3.3 V, C
L
= 50 pF, V
IH
= 3.3 V, V
IL
= 0 V
V
CC
= 2.5 V, C
L
= 30 pF, V
IH
= 2.5 V, V
IL
= 0 V
­0.8
­0.6
V
3. Number of outputs defined as "n". Measured with "n­1" outputs switching from HIGH­to­LOW or LOW­to­HIGH. The remaining output is
measured in the LOW state.
CAPACITIVE CHARACTERISTICS
Symbol
Parameter
Condition
Typical
Unit
C
IN
Input Capacitance
V
CC
= 3.3 V, V
I
= 0 V or V
CC
7
pF
C
OUT
Output Capacitance
V
CC
= 3.3 V, V
I
= 0 V or V
CC
8
pF
C
PD
Power Dissipation Capacitance
10 MHz, V
CC
= 3.3 V, V
I
= 0 V or V
CC
25
pF
Figure 3. Switching Waveforms
V
CC
GND
50%
50% V
CC
A
Y
t
PHL
t
PLH
Figure 4. Test Circuit
V
OL
V
OH
PULSE
GENERATOR
R
T
DUT
V
CC
R
L
C
L
C
L
=50 pF at V
CC
= 3.3
0.3 V or equivalent
(includes jig and probe capacitance)
R
L
= R
1
= 500
or equivalent
R
T
= Z
OUT
of pulse generator (typically 50
)
MC74LCX14
http://onsemi.com
5
V
H
V
in
V
out
V
CC
V
T+
V
GND
V
OH
V
OL
V
H
V
in
V
out
V
CC
V
T+
V
GND
V
OH
V
OL
(a) A Schmitt­Trigger Squares Up Inputs With Slow Rise and Fall Times
(b) A Schmitt­Trigger Offers Maximum Noise Immunity
Figure 5. Typical Input Threshold, V
T+
, V
versus Power Supply Voltage
Figure 6. Typical Schmitt­Trigger Applications
Figure 7. Input Equivalent Circuit
INPUT
V
H
typ
V
CC
, POWER SUPPLY VOLTAGE (VOLTS)
2
3
1
2
3
4
V T
,
TYPICAL
INPUT

THRESHOLD VOL
T
AGE (VOL
TS)
V
H
typ = (V
T+
typ) ­ (V
typ)
(V
T+
)
(V
)
2.5
3.5
3.6