ChipFind - Datasheet

Part Number LT1208

Download:  PDF   ZIP
1
LT1208/LT1209
Dual and Quad
45MHz, 400V/
µ
s Op Amps
s
45MHz Gain-Bandwidth
s
400V/
µ
s Slew Rate
s
Unity-Gain Stable
s
7V/mV DC Gain, R
L
= 500
s
3mV Maximum Input Offset Voltage
s
±
12V Minimum Output Swing into 500
s
Wide Supply Range:
±
2.5V to
±
15V
s
7mA Supply Current per Amplifier
s
90ns Settling Time to 0.1%, 10V Step
s
Drives All Capacitive Loads
D
U
ESCRIPTIO
S
FEATURE
The LT1208/LT1209 are dual and quad very high speed
operational amplifiers with excellent DC performance. The
LT1208/LT1209 feature reduced input offset voltage and
higher DC gain than devices with comparable bandwidth
and slew rate. Each amplifier is a single gain stage with
outstanding settling characteristics. The fast settling time
makes the circuit an ideal choice for data acquisition
systems. Each output is capable of driving a 500
load to
±
12V with
±
15V supplies and a 150
load to
±
3V on
±
5V
supplies. The amplifiers are also capable of driving large
capacitive loads which make them useful in buffer or cable
driver applications.
The LT1208/LT1209 are members of a family of fast, high
performance amplifiers that employ Linear Technology
Corporation's advanced bipolar complementary
processing.
U
A
O
PPLICATI
TYPICAL
U
S
A
O
PPLICATI
s
Wideband Amplifiers
s
Buffers
s
Active Filters
s
Video and RF Amplification
s
Cable Drivers
s
Data Acquisition Systems
1MHz, 4th Order Butterworth Filter
1208/09 TA02
­
+
1/2
LT1208
2.67k
909
47pF
220pF
V
IN
909
­
+
1/2
LT1208
2.21k
1.1k
22pF
470pF
1.1k
V
OUT
1208/09 TA01
Inverter Pulse Response
LT1208/LT1209
2
A
U
G
W
A
W
U
W
A
R
BSOLUTE
XI
TI
S
Total Supply Voltage (V
+
to V
­
) .............................. 36V
Differential Input Voltage ........................................
±
6V
Input Voltage ...........................................................
±
V
S
Output Short-Circuit Duration (Note 1) ........... Indefinite
Operating Temperature Range
LT1208C/LT1209C .......................... ­ 40
°
C to 85
°
C
Maximum Junction Temperature
Plastic Package ............................................. 150
°
C
Storage Temperature Range ................ ­ 65
°
C to 150
°
C
Lead Temperature (Soldering, 10 sec) ................. 300
°
C
W
U
U
PACKAGE/ORDER I FOR ATIO
ORDER PART
NUMBER
ORDER PART
NUMBER
LT1208CS8
S8 PART MARKING
1208
1
2
3
4
8
7
6
5
TOP VIEW
OUT A
­IN A
+IN A
V
­
V
+
OUT B
­IN B
+IN B
N8 PACKAGE
8-LEAD PLASTIC DIP
A
B
T
JMAX
= 150
°
C,
JA
= 150
°
C/W
T
JMAX
= 150
°
C,
JA
= 100
°
C/W
ORDER PART
NUMBER
ORDER PART
NUMBER
LT1209CS
LT1209CN
T
JMAX
= 150
°
C,
JA
= 100
°
C/W
T
JMAX
= 150
°
C,
JA
= 70
°
C/W
ELECTRICAL C
C
HARA TERISTICS
V
S
=
±
15V, T
A
= 25
°
C, R
L
= 1k, V
CM
= 0V, unless otherwise noted.
SYMBOL
PARAMETER
CONDITIONS
MIN
TYP
MAX
UNITS
V
OS
Input Offset Voltage
V
S
=
±
5V (Note 2)
0.5
3.0
mV
0
°
C to 70
°
C
q
4.0
mV
V
S
=
±
15V (Note 2)
1.0
5.0
mV
0
°
C to 70
°
C
q
6.0
mV
Input V
OS
Drift
25
µ
V/
°
C
I
OS
Input Offset Current
V
S
=
±
5V and V
S
=
±
15V
100
400
nA
0
°
C to 70
°
C
q
600
nA
I
B
Input Bias Current
V
S
=
±
5V and V
S
=
±
15V
4
8
µ
A
0
°
C to 70
°
C
q
9
µ
A
e
n
Input Noise Voltage
f = 10kHz
22
nV/
Hz
i
n
Input Noise Current
f = 10kHz
1.1
pA/
Hz
1
2
3
4
5
6
7
TOP VIEW
N PACKAGE
14-LEAD PLASTIC DIP
14
13
12
11
10
9
8
A
D
OUT A
­IN A
+IN A
V
+
+IN B
­IN B
OUT B
OUT D
­IN D
+IN D
V
­
+IN C
­IN C
OUT C
C
B
1
2
3
4
8
7
6
5
TOP VIEW
S8 PACKAGE
8-LEAD PLASTIC SOIC
A
B
OUT A
­IN A
+IN A
V
­
V
+
OUT B
­IN B
+IN B
TOP VIEW
S PACKAGE
16-LEAD PLASTIC SOIC
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
A
D
OUT A
­IN A
+IN A
V
+
+IN B
­IN B
OUT B
NC
OUT D
­IN D
+IN D
V
­
+IN C
­IN C
OUT C
NC
C
B
LT1208CN8
CONTACT FACTORY FOR
MILITARY/883B PARTS
3
LT1208/LT1209
ELECTRICAL C
C
HARA TERISTICS
V
S
=
±
15V, T
A
= 25
°
C, R
L
= 1k, V
CM
= 0V, unless otherwise noted.
SYMBOL
PARAMETER
CONDITIONS
MIN
TYP
MAX
UNITS
R
IN
Input Resistance
V
CM
=
±
12V
20
40
M
Differential
250
k
C
IN
Input Capacitance
2
pF
CMRR
Common-Mode Rejection Ratio
V
S
=
±
15V, V
CM
=
±
12V; V
S
=
±
5V,
86
98
dB
V
CM
=
±
2.5V, 0
°
C to 70
°
C
q
83
dB
PSRR
Power Supply Rejection Ratio
V
S
=
±
5V to
±
15V
76
84
dB
0
°
C to 70
°
C
q
75
dB
Input Voltage Range
V
S
=
±
15V
±
12
±
13
V
V
S
=
±
5V
±
2.5
±
3
V
A
VOL
Large-Signal Voltage Gain
V
S
=
±
15V, V
OUT
=
±
10V, R
L
= 500
3.3
7
V/mV
0
°
C to 70
°
C
q
2.5
V/mV
V
S
=
±
5V, V
OUT
=
±
2.5V, R
L
= 500
2.5
7
V/mV
0
°
C to 70
°
C
q
2.0
V/mV
V
S
=
±
5V, V
OUT
=
±
2.5V, R
L
= 150
3
V/mV
V
OUT
Output Swing
V
S
=
±
15V, R
L
= 500
, 0
°
C to 70
°
C
q
12.0
13.3
±
V
V
S
=
±
5V, R
L
= 150
, 0
°
C to 70
°
C
q
3.0
3.3
±
V
I
OUT
Output Current
V
S
=
±
15V, V
OUT
=
±
12V, 0
°
C to 70
°
C
q
24
40
mA
V
S
=
±
5V, V
OUT
=
±
3V, 0
°
C to 70
°
C
q
20
40
mA
SR
Slew Rate
V
S
=
±
15V, A
VCL
= ­ 2, (Note 3)
250
400
V/
µ
s
0
°
C to 70
°
C
q
200
V/
µ
s
V
S
=
±
5V, A
VCL
= ­ 2, (Note 3)
150
250
V/
µ
s
0
°
C to 70
°
C
q
130
V/
µ
s
Full Power Bandwidth
10V Peak, (Note 4)
6.4
MHz
GBW
Gain-Bandwidth
V
S
=
±
15V, f = 1MHz
45
MHz
V
S
=
±
5V, f = 1MHz
34
MHz
t
r
, t
f
Rise Time, Fall Time
V
S
=
±
15V, A
VCL
= 1, 10% to 90%, 0.1V
5
ns
V
S
=
±
5V, A
VCL
= 1, 10% to 90%, 0.1V
7
ns
Overshoot
V
S
=
±
15V, A
VCL
= 1, 0.1V
30
%
V
S
=
±
5V, A
VCL
= 1, 0.1V
20
%
Propagation Delay
V
S
=
±
15V, 50% V
IN
to 50%V
OUT
5
ns
V
S
=
±
5V, 50% V
IN
to 50%V
OUT
7
ns
t
s
Settling Time
V
S
=
±
15V, 10V Step, V
S
=
±
5V,
90
ns
5V Step, 0.1%
Differential Gain
f = 3.58MHz, R
L
= 150
1.30
%
f = 3.58MHz, R
L
= 1k
0.09
%
Differential Phase
f = 3.58MHz, R
L
= 150
1.8
Deg
f = 3.58MHz, R
L
= 1k
0.1
Deg
R
O
Output Resistance
A
VCL
= 1, f = 1MHz
2.5
Crosstalk
V
OUT
=
±
10V, R
L
= 500
­100
­ 94
dB
I
S
Supply Current
Each Amplifier, V
S
=
±
5V and V
S
=
±
15V
7
9
mA
0
°
C to 70
°
C
q
10.5
mA
Note 3: Slew rate is measured in a gain of ­2. For
±
15V supplies measure
between
±
10V on the output with
±
6V on the input. For
±
5V supplies
measure between
±
2V on the output with
±
1.75V on the input.
Note 4: Full power bandwidth is calculated from the slew rate
measurement: FPBW = SR/2
V
P
.
The
q
denotes the specifications which apply over the full operating
temperature range.
Note 1: A heat sink may be required to keep the junction temperature
below absolute maximum when the output is shorted indefinitely.
Note 2: Input offset voltage is tested with automated test equipment and is
exclusive of warm-up drift.
LT1208/LT1209
4
C
C
HARA TERISTICS
U
W
A
TYPICAL PERFOR
CE
Input Common-Mode Range vs
Supply Current vs Supply Voltage
Output Voltage Swing vs
Supply Voltage
and Temperature
Supply Voltage
SUPPLY VOLTAGE (±V)
0
0
MAGNITUDE OF INPUT VOLTAGE (V)
5
10
15
20
5
10
15
20
1208/09 G01
T
A
= 25°C
V
OS
< 1mV
+V
CM
­V
CM
SUPPLY VOLTAGE (±V)
0
0
OUTPUT VOLTAGE SWING (V)
5
10
15
20
5
10
15
20
1208/09 G03
T
A
= 25°C
R
L
= 500
V
OS
= 30mV
+V
SW
­V
SW
Output Voltage Swing vs
Input Bias Current vs Input
Open-Loop Gain vs
Resistive Load
Common-Mode Voltage
Resistive Load
LOAD RESISTANCE (
)
10
0
OUTPUT VOLTAGE SWING (V
P-P
)
10
20
25
30
100
1k
10k
1208/09 G04
15
5
T
A
= 25°C
V
OS
= 30mV
V
S
= ±15V
V
S
= ±5V
INPUT COMMON-MODE VOLTAGE (V)
­15
3.0
INPUT BIAS CURRENT (
µ
A)
3.5
4.0
4.5
5.0
­10
0
10
15
1208/09 G05
­5
5
V
S
= ±15V
T
A
= 25°C
I
B
+
+ I
B
­
2
I
B
=
LOAD RESISTANCE (
)
10
50
OPEN-LOOP GAIN (dB)
80
90
100
100
1k
10k
1208/09 G06
70
60
T
A
= 25°C
V
S
= ±15V
V
S
= ±5V
TEMPERATURE (°C)
­50
3.50
INPUT BIAS CURRENT (
µ
A)
4.00
4.25
4.75
5.00
­25
25
75
125
1208/09 G07
100
50
0
3.75
4.50
V
S
= ±15V
I
B
+
+ I
B
­
2
I
B
=
FREQUENCY (Hz)
10
100
10
1
0.1
100
1k
10k
100k
1208/09 G09
INPUT CURRENT NOISE (pA/
Hz)
INPUT VOLTAGE NOISE (nV/
Hz)
10000
1000
100
10
V
S
= ±15V
T
A
= 25°C
A
V
= 101
R
S
= 100k
i
n
e
n
Output Short-Circuit Current
Input Bias Current vs Temperature
vs Temperature
Input Noise Spectral Density
TEMPERATURE (°C)
­50
25
OUTPUT SHORT-CIRCUIT CURRENT (mA)
35
40
50
55
­25
25
75
125
1208/09 G08
100
50
0
30
45
V
S
= ±5V
SINK
SOURCE
SUPPLY VOLTAGE (±V)
0
SUPPLY CURRENT (mA)
12
10
8
6
4
2
0
5
10
15
20
1208/09 G02
25°C
­55°C
125°C
5
LT1208/LT1209
C
C
HARA TERISTICS
U
W
A
TYPICAL PERFOR
CE
FREQUENCY (Hz)
100k
CROSSTALK (dB)
1M
10M
100M
1208/09 G10
­20
­30
­40
­50
­60
­70
­80
­90
­100
­110
­120
T
A
= 25°C
V
IN
= 0dBm
A
V
= 1
V
S
= ±5V
R
L
= 500
V
S
= ±15V
R
L
= 1k
Power Supply Rejection Ratio
Common-Mode Rejection Ratio
Crosstalk vs Frequency
vs Frequency
vs Frequency
FREQUENCY (Hz)
100
0
POWER SUPPLY REJECTION RATIO (dB)
40
80
100
1k
100k
1M
100M
10M
10k
20
60
V
S
= ±15V
T
A
= 25°C
+PSRR
­PSRR
1208/09 G11
FREQUENCY (Hz)
0
COMMON-MODE REJECTION RATIO (dB)
40
100
120
1k
100k
1M
100M
1208/09 G12
10M
10k
20
60
80
V
S
= ±15V
T
A
= 25°C
Voltage Gain and Phase vs
Frequency Response vs
Frequency
Output Swing vs Settling Time
Capacitive Load
FREQUENCY (Hz)
100
­20
VOLTAGE GAIN (dB)
20
60
80
1k
100k
1M
100M
1208/09 B13
10M
10k
0
40
V
S
= ±5V
T
A
= 25°C
PHASE MARGIN (DEG)
0
40
80
100
20
60
V
S
= ±15V
V
S
= ±5V
V
S
= ±15V
FREQUENCY (Hz)
1M
­10
VOLTAGE MAGNITUDE (dB)
­ 6
­4
0
4
6
10
10M
100M
1208/09 G15
V
S
= ±15V
T
A
= 25°C
A
V
= ­1
­ 8
­2
2
8
C = 1000pF
C = 0
C = 50pF
C = 100pF
C = 500pF
SETTLING TIME (ns)
0
OUTPUT SWING (V)
10
8
6
4
2
0
­2
­4
­6
­8
­10
100
1208/09 G14
25
50
75
125
V
S
= ±15V
T
A
= 25°C
10mV SETTLING
A
V
= 1
A
V
= ­1
A
V
= 1
A
V
= ­1
Closed-Loop Output Impedance
vs Frequency
Gain-Bandwidth vs Temperature
Slew Rate vs Temperature
FREQUENCY (Hz)
10k
0.01
OUTPUT IMPEDANCE (
)
0.1
1
10
100
100k
1M
10M
100M
1208/09 G16
V
S
= ±15V
T
A
= 25°C
A
V
= +1
TEMPERATURE (°C)
­50
200
SLEW RATE (V/
µ
s)
300
350
450
500
­25
25
75
125
1208/09 G18
100
50
0
250
400
V
S
= ±15V
A
V
= ­2
­SR
+SR
TEMPERATURE (°C)
­50
42
GAIN-BANDWIDTH (MHz)
44
45
47
48
­25
25
75
125
1208/09 G17
100
50
0
43
46
V
S
= ±15V