ChipFind - Datasheet

Part Number IRG4BC30F

Download:  PDF   ZIP
Äîêóìåíòàöèÿ è îïèñàíèÿ www.docs.chipfind.ru
background image
Parameter
Max.
Units
V
CES
Collector-to-Emitter Breakdown Voltage
600
V
I
C
@ T
C
= 25°C
Continuous Collector Current
31
I
C
@ T
C
= 100°C
Continuous Collector Current
17
A
I
CM
Pulsed Collector Current
Q
120
I
LM
Clamped Inductive Load Current
R
120
V
GE
Gate-to-Emitter Voltage
± 20
V
E
ARV
Reverse Voltage Avalanche Energy
S
10
mJ
P
D
@ T
C
= 25°C
Maximum Power Dissipation
100
P
D
@ T
C
= 100°C
Maximum Power Dissipation
42
T
J
Operating Junction and
-55 to + 150
T
STG
Storage Temperature Range
Soldering Temperature, for 10 seconds
300 (0.063 in. (1.6mm from case )
°C
Mounting torque, 6-32 or M3 screw.
10 lbf·in (1.1N·m)
IRG4BC30F
Fast Speed IGBT
INSULATED GATE BIPOLAR TRANSISTOR
PD - 91450B
E
C
G
n-channel
Features
Features
Features
Features
Features
· Fast: optimized for medium operating
frequencies ( 1-5 kHz in hard switching, >20
kHz in resonant mode).
· Generation 4 IGBT design provides tighter
parameter distribution and higher efficiency than
Generation 3
· Industry standard TO-220AB package
· Generation 4 IGBTs offer highest efficiency available
· IGBTs optimized for specified application conditions
· Designed to be a "drop-in" replacement for equivalent
industry-standard Generation 3 IR IGBTs
Benefits
V
CES
= 600V
V
CE(on) typ.
= 1.59V
@V
GE
= 15V, I
C
= 17A
4/17/2000
Parameter
Typ.
Max.
Units
R
JC
Junction-to-Case
­­­
1.2
R
CS
Case-to-Sink, Flat, Greased Surface
0.5
­­­
°C/W
R
JA
Junction-to-Ambient, typical socket mount
­­­
80
Wt
Weight
2.0 (0.07)
­­­
g (oz)
Thermal Resistance
Absolute Maximum Ratings
W
TO-220AB
www.irf.com
1
background image
IRG4BC30F
2
www.irf.com
Parameter
Min. Typ. Max. Units
Conditions
Q
g
Total Gate Charge (turn-on)
--
51
77
I
C
= 17A
Q
ge
Gate - Emitter Charge (turn-on)
--
7.9
12
nC
V
CC
= 400V
See Fig. 8
Q
gc
Gate - Collector Charge (turn-on)
--
19
28
V
GE
= 15V
t
d(on)
Turn-On Delay Time
--
21
--
t
r
Rise Time
--
15
--
T
J
= 25°C
t
d(off)
Turn-Off Delay Time
--
200
300
I
C
= 17A, V
CC
= 480V
t
f
Fall Time
--
180
270
V
GE
= 15V, R
G
= 23
E
on
Turn-On Switching Loss
--
0.23
--
Energy losses include "tail"
E
off
Turn-Off Switching Loss
--
1.18
--
mJ
See Fig. 10, 11, 13, 14
E
ts
Total Switching Loss
--
1.41
2.0
t
d(on)
Turn-On Delay Time
--
20
--
T
J
= 150°C,
t
r
Rise Time
--
16
--
I
C
= 17A, V
CC
= 480V
t
d(off)
Turn-Off Delay Time
--
290
--
V
GE
= 15V, R
G
= 23
t
f
Fall Time
--
350
--
Energy losses include "tail"
E
ts
Total Switching Loss
--
2.5
--
mJ
See Fig. 13, 14
L
E
Internal Emitter Inductance
--
7.5
--
nH
Measured 5mm from package
C
ies
Input Capacitance
--
1100
--
V
GE
= 0V
C
oes
Output Capacitance
--
74
--
pF
V
CC
= 30V
See Fig. 7
C
res
Reverse Transfer Capacitance
--
14
--
= 1.0MHz
Parameter
Min. Typ. Max. Units
Conditions
V
(BR)CES
Collector-to-Emitter Breakdown Voltage
600
--
--
V
V
GE
= 0V, I
C
= 250µA
V
(BR)ECS
Emitter-to-Collector Breakdown Voltage
T
18
--
--
V
V
GE
= 0V, I
C
= 1.0A
V
(BR)CES
/
T
J
Temperature Coeff. of Breakdown Voltage
--
0.69
--
V/°C
V
GE
= 0V, I
C
= 1.0mA
--
1.59
1.8
I
C
= 17A V
GE
= 15V
V
CE(ON)
Collector-to-Emitter Saturation Voltage
--
1.99
--
I
C
= 31A
See Fig.2, 5
--
1.7
--
I
C
= 17A , T
J
= 150°C
V
GE(th)
Gate Threshold Voltage
3.0
--
6.0
V
CE
= V
GE
, I
C
= 250µA
V
GE(th)
/
T
J
Temperature Coeff. of Threshold Voltage
--
-11
--
mV/°C V
CE
= V
GE
, I
C
= 250µA
g
fe
Forward Transconductance
U
6.1
10
--
S
V
CE
= 100V, I
C
= 17A
--
--
250
V
GE
= 0V, V
CE
= 600V
--
--
2.0
V
GE
= 0V, V
CE
= 10V, T
J
= 25°C
--
--
1000
V
GE
= 0V, V
CE
= 600V, T
J
= 150°C
I
GES
Gate-to-Emitter Leakage Current
--
--
±100
n A
V
GE
= ±20V
Electrical Characteristics @ T
J
= 25°C (unless otherwise specified)
I
CES
Zero Gate Voltage Collector Current
V
µ A
Switching Characteristics @ T
J
= 25°C (unless otherwise specified)
ns
ns
T
Pulse width
80µs; duty factor 0.1%.
U
Pulse width 5.0µs, single shot.
Notes:
Q
Repetitive rating; V
GE
= 20V, pulse width limited by
max. junction temperature. ( See fig. 13b )
R
V
CC
= 80%(V
CES
), V
GE
= 20V, L = 10µH, R
G
= 23
,
(See fig. 13a)
S
Repetitive rating; pulse width limited by maximum
junction temperature.
background image
IRG4BC30F
www.irf.com
3
Fig. 1 - Typical Load Current vs. Frequency
(For square wave, I=I
RMS
of fundamental; for triangular wave, I=I
PK
)
Fig. 2 - Typical Output Characteristics
Fig. 3 - Typical Transfer Characteristics
1
1 0
1 0 0
1 0 0 0
1
1 0
C E
C
I , Collector-to-Emitter Current (A)
V , Collector-to-Emitter Voltage (V)
T = 150°C
T = 25°C
J
J
V = 15V
20µs PULSE WIDTH
G E
A
1
1 0
1 0 0
1 0 0 0
5
6
7
8
9
1 0
1 1
1 2
1 3
C
I , Collector-to-Emitter Current (A)
G E
T = 25°C
T = 150°C
J
J
V , Gate-to-Emitter Voltage (V)
A
V = 50V
5 µ s P U L S E W I D T H
C C
Load Current ( A )
0
1 0
2 0
3 0
4 0
5 0
0 . 1
1
1 0
1 0 0
f, Frequency (kHz)
A
6 0 % o f ra te d
vo lt a g e
I
Id e a l di o de s
S q u are wa ve:
F o r b o t h :
D uty cy c le : 5 0%
T = 12 5° C
T = 90 °C
G a te d rive a s s pe c ified
s in k
J
T ria n g u la r wa v e :
I
C la m p v o lt a g e :
8 0 % o f r a t e d
P o w e r D i ss ip a tio n = 2 1 W
background image
IRG4BC30F
4
www.irf.com
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig. 5 - Typical Collector-to-Emitter Voltage
vs. Junction Temperature
Fig. 4 - Maximum Collector Current vs. Case
Temperature
1 . 0
1 . 5
2 . 0
2 . 5
- 6 0
- 4 0
- 2 0
0
2 0
4 0
6 0
8 0
1 0 0
1 2 0
1 4 0
1 6 0
CE
V , Collector-to-Emitter Voltage (V)
V = 15V
80µs PULSE WIDTH
G E
A
T , Junction Temperature (°C)
J
I = 8.5A
I = 17A
I = 34A
C
C
C
0 .0 1
0 .1
1
1 0
0 .0 0 0 0 1
0 .0 0 0 1
0 .0 0 1
0 .0 1
0 .1
1
1 0
t , R e c ta n gu la r P u ls e D ura tio n (s e c )
1
th
J
C
D = 0 .5 0
0 .0 1
0 .0 2
0 .0 5
0 .1 0
0 .2 0
S IN G L E P U L S E
( T H E R M A L R E S P O N S E )
T
h
e
r
m
a
l
R
e
s
p
ons
e (
Z

)
P
t
2
1
t
D M
N o te s :
1 . D u ty fa c to r D = t / t
2 . P e a k T = P x Z + T
1
2
J
D M
th J C
C
0
1 0
2 0
3 0
4 0
2 5
5 0
7 5
1 0 0
1 2 5
1 5 0
M
a
x
i
m
u
m
D
C

C
o
l
l
e
c
t
o
r
C
u
rre
n
t

(A
)
T , C ase Tem perature (°C )
C
V = 15 V
G E
background image
IRG4BC30F
www.irf.com
5
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
0
4 0 0
8 0 0
1 2 0 0
1 6 0 0
2 0 0 0
1
1 0
1 0 0
C E
C, Capacitance (pF)
V , Collector-to-Emitter Voltage (V)
A
C
ies
C
res
C
oes
V
GE
= 0V f = 1 MHz
Cies = Cge + Cgc + Cce SHORTED
Cres = Cce
Coes = Cce + Cgc
0
4
8
1 2
1 6
2 0
0
1 0
2 0
3 0
4 0
5 0
6 0
GE
V , Gate-to-Emitter Voltage (V)
g
Q , Total Gate Charge (nC)
A
V = 400V
I = 17A
C E
C
1 . 3 0
1 . 3 5
1 . 4 0
1 . 4 5
1 . 5 0
0
1 0
2 0
3 0
4 0
5 0
6 0
Total Switching Losses (mJ)
A
V = 480V
V = 15V
T = 25°C
I = 17A
R , Gate Resistance (
)
G
C C
G E
J
C
0 . 1
1
1 0
- 6 0
- 4 0
- 2 0
0
2 0
4 0
6 0
8 0
1 0 0
1 2 0
1 4 0
1 6 0
Total Switching Losses (mJ)
A
T , Junction Temperature (°C)
J
R = 23
V = 15V
V = 480V
I = 8.5A
I = 17A
I = 34A
G
G E
C C
C
C
C