ChipFind - Datasheet

Part Number IRFZ46N

Download:  PDF   ZIP
IRFZ46N
HEXFET
®
Power MOSFET
01/24/01
Absolute Maximum Ratings
Parameter
Typ.
Max.
Units
R
JC
Junction-to-Case
­­­
1.4
R
CS
Case-to-Sink, Flat, Greased Surface
0.50
­­­
°C/W
R
JA
Junction-to-Ambient
­­­
62
Thermal Resistance
www.irf.com
1
V
DSS
= 55V
R
DS(on)
= 16.5m
I
D
= 53A
S
D
G
TO-220AB
Advanced HEXFET
®
Power MOSFETs from International
Rectifier utilize advanced processing techniques to achieve
extremely low on-resistance per silicon area. This benefit,
combined with the fast switching speed and ruggedized
device design that HEXFET power MOSFETs are well
known for, provides the designer with an extremely efficient
and reliable device for use in a wide variety of applications.
The TO-220 package is universally preferred for all
commercial-industrial applications at power dissipation
levels to approximately 50 watts. The low thermal
resistance and low package cost of the TO-220 contribute
to its wide acceptance throughout the industry.
l
Advanced Process Technology
l
Ultra Low On-Resistance
l
Dynamic dv/dt Rating
l
175°C Operating Temperature
l
Fast Switching
l
Fully Avalanche Rated
Description
PD-91277
Parameter
Max.
Units
I
D
@ T
C
= 25°C
Continuous Drain Current, V
GS
@ 10V
53
I
D
@ T
C
= 100°C
Continuous Drain Current, V
GS
@ 10V
37
A
I
DM
Pulsed Drain Current
180
P
D
@T
C
= 25°C
Power Dissipation
107
W
Linear Derating Factor
0.71
W/°C
V
GS
Gate-to-Source Voltage
± 20
V
I
AR
Avalanche Current
28
A
E
AR
Repetitive Avalanche Energy
11
mJ
dv/dt
Peak Diode Recovery dv/dt
5.0
V/ns
T
J
Operating Junction and
-55 to + 175
T
STG
Storage Temperature Range
Soldering Temperature, for 10 seconds
300 (1.6mm from case )
°C
Mounting torque, 6-32 or M3 srew
10 lbf·in (1.1N·m)
IRFZ46N
2
www.irf.com
S
D
G
Parameter
Min. Typ. Max. Units
Conditions
I
S
Continuous Source Current
MOSFET symbol
(Body Diode)
­­­
­­­
showing the
I
SM
Pulsed Source Current
integral reverse
(Body Diode)
­­­
­­­
p-n junction diode.
V
SD
Diode Forward Voltage
­­­
­­­
1.3
V
T
J
= 25°C, I
S
= 28A, V
GS
= 0V
t
rr
Reverse Recovery Time
­­­
67
101
ns
T
J
= 25°C, I
F
= 28A
Q
rr
Reverse Recovery Charge
­­­
208
312
nC
di/dt = 100A/µs
t
on
Forward Turn-On Time
Intrinsic turn-on time is negligible (turn-on is dominated by L
S
+L
D
)
Source-Drain Ratings and Characteristics
53
180
A
Starting T
J
= 25°C, L = 389
µ
H
R
G
= 25
, I
AS
= 28A. (See Figure 12)
Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
Notes:
I
SD
28A, di/dt
220A/µs, V
DD
V
(BR)DSS
,
T
J
175°C
Pulse width
400µs; duty cycle
2%.
This is a typical value at device destruction and represents
operation outside rated limits.
This is a calculated value limited to T
J
= 175°C.
Parameter
Min. Typ. Max. Units
Conditions
V
(BR)DSS
Drain-to-Source Breakdown Voltage
55
­­­
­­­
V
V
GS
= 0V, I
D
= 250µA
V
(BR)DSS
/
T
J
Breakdown Voltage Temp. Coefficient
­­­
0.057 ­­­
V/°C
Reference to 25°C, I
D
= 1mA
R
DS(on)
Static Drain-to-Source On-Resistance
­­­
­­­
16.5
m
V
GS
= 10V, I
D
= 28A
V
GS(th)
Gate Threshold Voltage
2.0
­­­
4.0
V
V
DS
= V
GS
, I
D
= 250µA
g
fs
Forward Transconductance
19
­­­
­­­
S
V
DS
= 25V, I
D
= 28A
­­­
­­­
25
µA
V
DS
= 55V, V
GS
= 0V
­­­
­­­
250
V
DS
= 44V, V
GS
= 0V, T
J
= 150°C
Gate-to-Source Forward Leakage
­­­
­­­
100
V
GS
= 20V
Gate-to-Source Reverse Leakage
­­­
­­­
-100
nA
V
GS
= -20V
Q
g
Total Gate Charge
­­­
­­­
72
I
D
= 28A
Q
gs
Gate-to-Source Charge
­­­
­­­
11
nC
V
DS
= 44V
Q
gd
Gate-to-Drain ("Miller") Charge
­­­
­­­
26
V
GS
= 10V, See Fig. 6 and 13
t
d(on)
Turn-On Delay Time
­­­
14
­­­
V
DD
= 28V
t
r
Rise Time
­­­
76
­­­
I
D
= 28A
t
d(off)
Turn-Off Delay Time
­­­
52
­­­
R
G
= 12
t
f
Fall Time
­­­
57
­­­
V
GS
= 10V, See Fig. 10
Between lead,
­­­
­­­
6mm (0.25in.)
from package
and center of die contact
C
iss
Input Capacitance
­­­
1696
­­­
V
GS
= 0V
C
oss
Output Capacitance
­­­
407
­­­
V
DS
= 25V
C
rss
Reverse Transfer Capacitance
­­­
110
­­­
pF
= 1.0MHz, See Fig. 5
E
AS
Single Pulse Avalanche Energy
­­­
583
152
mJ
I
AS
= 28A, L = 389
µ
H
nH
Electrical Characteristics @ T
J
= 25°C (unless otherwise specified)
L
D
Internal Drain Inductance
L
S
Internal Source Inductance
­­­
­­­
S
D
G
I
GSS
ns
4.5
7.5
I
DSS
Drain-to-Source Leakage Current
IRFZ46N
www.irf.com
3
Fig 4. Normalized On-Resistance
Vs. Temperature
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
1
10
100
1000
0.1
1
10
100
20µs PULSE WIDTH
T = 25 C
J
°
TOP
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
V , Drain-to-Source Voltage (V)
I , Drain-to-Source Current (A)
DS
D
4.5V
1
10
100
1000
0.1
1
10
100
20µs PULSE WIDTH
T = 175 C
J
°
TOP
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
V , Drain-to-Source Voltage (V)
I , Drain-to-Source Current (A)
DS
D
4.5V
1
10
100
1000
4
5
6
7
8
9
10
11
V = 25V
20µs PULSE WIDTH
DS
V , Gate-to-Source Voltage (V)
I , Drain-to-Source Current (A)
GS
D
T = 25 C
J
°
T = 175 C
J
°
-60 -40 -20
0
20 40
60 80 100 120 140 160 180
0.0
0.5
1.0
1.5
2.0
2.5
3.0
T , Junction Temperature ( C)
R , Drain-to-Source On Resistance
(Normalized)
J
DS(on)
°
V
=
I =
GS
D
10V
53A
IRFZ46N
4
www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
0
10
20
30
40
50
60
70
0
4
8
12
16
20
Q , Total Gate Charge (nC)
V , Gate-to-Source Voltage (V)
G
GS
FOR TEST CIRCUIT
SEE FIGURE
I =
D
13
28A
V
= 11V
DS
V
= 27V
DS
V
= 44V
DS
0.1
1
10
100
1000
0.2
0.7
1.2
1.7
2.2
V ,Source-to-Drain Voltage (V)
I , Reverse Drain Current (A)
SD
SD
V = 0 V
GS
T = 25 C
J
°
T = 175 C
J
°
1
10
100
0
500
1000
1500
2000
2500
3000
V , Drain-to-Source Voltage (V)
C, Capacitance (pF)
DS
V
C
C
C
=
=
=
=
0V,
C
C
C
f = 1MHz
+ C
+ C
C SHORTED
GS
iss
gs
gd ,
ds
rss
gd
oss
ds
gd
Ciss
Coss
Crss
1
10
100
VDS , Drain-toSource Voltage (V)
0.1
1
10
100
1000
I D
, Drain-to-Source Current (A)
Tc = 25°C
Tj = 175°C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY R DS (on)
100µsec
IRFZ46N
www.irf.com
5
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 9. Maximum Drain Current Vs.
Case Temperature
0.01
0.1
1
10
0.00001
0.0001
0.001
0.01
0.1
1
Notes:
1. Duty factor D = t / t
2. Peak T = P
x Z
+ T
1
2
J
DM
thJC
C
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Thermal Response
(Z )
1
thJC
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)
25
50
75
100
125
150
175
0
10
20
30
40
50
60
T , Case Temperature ( C)
I , Drain Current (A)
°
C
D
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
V
DS
Pulse Width
1
µs
Duty Factor
0.1 %
R
D
V
GS
R
G
D.U.T.
V
GS
+
-
V
DD
Fig 10a. Switching Time Test Circuit
Fig 10b. Switching Time Waveforms