ChipFind - Datasheet

Part Number IRFZ44NPBF

Download:  PDF   ZIP
IRFZ44NPbF
HEXFET
®
Power MOSFET
10/31/03
Parameter
Typ.
Max.
Units
R
JC
Junction-to-Case
­­­
1.5
R
CS
Case-to-Sink, Flat, Greased Surface
0.50
­­­
°C/W
R
JA
Junction-to-Ambient
­­­
62
Thermal Resistance
www.irf.com
1
V
DSS
= 55V
R
DS(on)
= 17.5m
I
D
= 49A
S
D
G
TO-220AB
Advanced HEXFET
®
Power MOSFETs from International
Rectifier utilize advanced processing techniques to achieve
extremely low on-resistance per silicon area. This benefit,
combined with the fast switching speed and ruggedized
device design that HEXFET power MOSFETs are well
known for, provides the designer with an extremely efficient
and reliable device for use in a wide variety of applications.
The TO-220 package is universally preferred for all
commercial-industrial applications at power dissipation
levels to approximately 50 watts. The low thermal
resistance and low package cost of the TO-220 contribute
to its wide acceptance throughout the industry.
Advanced Process Technology
Ultra Low On-Resistance
Dynamic dv/dt Rating
175°C Operating Temperature
Fast Switching
Fully Avalanche Rated
Lead-Free
Description
PD - 94787
Absolute Maximum Ratings
Parameter
Max.
Units
I
D
@ T
C
= 25°C
Continuous Drain Current, V
GS
@ 10V
49
I
D
@ T
C
= 100°C
Continuous Drain Current, V
GS
@ 10V
35
A
I
DM
Pulsed Drain Current
160
P
D
@T
C
= 25°C
Power Dissipation
94
W
Linear Derating Factor
0.63
W/°C
V
GS
Gate-to-Source Voltage
± 20
V
I
AR
Avalanche Current
25
A
E
AR
Repetitive Avalanche Energy
9.4
mJ
dv/dt
Peak Diode Recovery dv/dt
5.0
V/ns
T
J
Operating Junction and
-55 to + 175
T
STG
Storage Temperature Range
Soldering Temperature, for 10 seconds
300 (1.6mm from case )
°C
Mounting torque, 6-32 or M3 srew
10 lbf·in (1.1N·m)
IRFZ44NPbF
2
www.irf.com
S
D
G
Parameter
Min. Typ. Max. Units
Conditions
I
S
Continuous Source Current
MOSFET symbol
(Body Diode)
­­­
­­­
showing the
I
SM
Pulsed Source Current
integral reverse
(Body Diode)
­­­
­­­
p-n junction diode.
V
SD
Diode Forward Voltage
­­­
­­­
1.3
V
T
J
= 25°C, I
S
= 25A, V
GS
= 0V
t
rr
Reverse Recovery Time
­­­
63
95
ns
T
J
= 25°C, I
F
= 25A
Q
rr
Reverse Recovery Charge
­­­
170 260
nC
di/dt = 100A/µs
t
on
Forward Turn-On Time
Intrinsic turn-on time is negligible (turn-on is dominated by L
S
+L
D
)
Source-Drain Ratings and Characteristics
49
160
A
Starting T
J
= 25°C, L = 0.48mH
R
G
= 25
, I
AS
= 25A. (See Figure 12)
Repetitive rating; pulse width limited by
max. junction temperature. (See fig. 11)
Notes:
I
SD
25A, di/dt 230A/µs, V
DD
V
(BR)DSS
,
T
J
175°C
Pulse width
400µs; duty cycle 2%.
This is a typical value at device destruction and represents
operation outside rated limits.
This is a calculated value limited to T
J
= 175°C .
Parameter
Min. Typ. Max. Units
Conditions
V
(BR)DSS
Drain-to-Source Breakdown Voltage
55
­­­ ­­­
V
V
GS
= 0V, I
D
= 250µA
V
(BR)DSS
/
T
J
Breakdown Voltage Temp. Coefficient
­­­ 0.058 ­­­
V/°C Reference to 25°C, I
D
= 1mA
R
DS(on)
Static Drain-to-Source On-Resistance
­­­
­­­ 17.5
m
V
GS
= 10V, I
D
= 25A
V
GS(th)
Gate Threshold Voltage
2.0
­­­
4.0
V
V
DS
= V
GS
, I
D
= 250µA
g
fs
Forward Transconductance
19
­­­ ­­­
S
V
DS
= 25V, I
D
= 25A
­­­
­­­
25
µA
V
DS
= 55V, V
GS
= 0V
­­­
­­­ 250
V
DS
= 44V, V
GS
= 0V, T
J
= 150°C
Gate-to-Source Forward Leakage
­­­
­­­ 100
V
GS
= 20V
Gate-to-Source Reverse Leakage
­­­
­­­ -100
nA
V
GS
= -20V
Q
g
Total Gate Charge
­­­
­­­
63
I
D
= 25A
Q
gs
Gate-to-Source Charge
­­­
­­­
14
nC
V
DS
= 44V
Q
gd
Gate-to-Drain ("Miller") Charge
­­­
­­­
23
V
GS
= 10V, See Fig. 6 and 13
t
d(on)
Turn-On Delay Time
­­­
12
­­­
V
DD
= 28V
t
r
Rise Time
­­­
60
­­­
I
D
= 25A
t
d(off)
Turn-Off Delay Time
­­­
44
­­­
R
G
= 12
t
f
Fall Time
­­­
45
­­­
V
GS
= 10V, See Fig. 10
Between lead,
­­­
­­­
6mm (0.25in.)
from package
and center of die contact
C
iss
Input Capacitance
­­­ 1470 ­­­
V
GS
= 0V
C
oss
Output Capacitance
­­­
360 ­­­
V
DS
= 25V
C
rss
Reverse Transfer Capacitance
­­­
88
­­­
pF
= 1.0MHz, See Fig. 5
E
AS
Single Pulse Avalanche Energy
­­­ 530 150
mJ
I
AS
= 25A, L = 0.47mH
nH
Electrical Characteristics @ T
J
= 25°C (unless otherwise specified)
L
D
Internal Drain Inductance
L
S
Internal Source Inductance
­­­
­­­
S
D
G
I
GSS
ns
4.5
7.5
I
DSS
Drain-to-Source Leakage Current
IRFZ44NPbF
www.irf.com
3
Fig 4. Normalized On-Resistance
Vs. Temperature
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
1
10
100
1000
0.1
1
10
100
20µs PULSE WIDTH
T = 25 C
J
°
TOP
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
V , Drain-to-Source Voltage (V)
I , D
r
ain-to-S
ource C
u
rrent (A
)
DS
D
4.5V
1
10
100
1000
0.1
1
10
100
20µs PULSE WIDTH
T = 175 C
J
°
TOP
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
V , Drain-to-Source Voltage (V)
I , Drain-to-Source Current (A)
DS
D
4.5V
1
10
100
1000
4
5
6
7
8
9
10
11
V = 25V
20µs PULSE WIDTH
DS
V , Gate-to-Source Voltage (V)
I , D
r
ain-to-S
ource C
u
rrent (A
)
GS
D
T = 25 C
J
°
T = 175 C
J
°
-60 -40 -20 0 20 40 60 80 100 120 140 160 180
0.0
0.5
1.0
1.5
2.0
2.5
T , Junction Temperature ( C)
R , Drain-to-Source On Resistance
(Normalized)
J
D
S
(
on)
°
V
=
I =
GS
D
10V
49A
IRFZ44NPbF
4
www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
1
10
100
0
500
1000
1500
2000
2500
V , Drain-to-Source Voltage (V)
C, Capacitance (pF)
DS
V
C
C
C
=
=
=
=
0V,
C
C
C
f = 1MHz
+ C
+ C
C SHORTED
GS
iss
gs
gd ,
ds
rss
gd
oss
ds
gd
C
iss
C
oss
C
rss
0
10
20
30
40
50
60
70
0
4
8
12
16
20
Q , Total Gate Charge (nC)
V , Gate-to-Source Vol
t
age (V)
G
GS
I =
D
25A
V
= 11V
DS
V
= 27V
DS
V
= 44V
DS
0.1
1
10
100
1000
0.0
0.6
1.2
1.8
2.4
V ,Source-to-Drain Voltage (V)
I , Reverse Drain Current (A)
SD
SD
V = 0 V
GS
T = 25 C
J
°
T = 175 C
J
°
1
10
100
VDS , Drain-toSource Voltage (V)
0.1
1
10
100
1000
I D
,


D
r
a
i
n
-
t
o
-
S
o
u
r
c
e

C
u
r
r
e
n
t

(
A
)
Tc = 25°C
Tj = 175°C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100µsec
IRFZ44NPbF
www.irf.com
5
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 9. Maximum Drain Current Vs.
Case Temperature
25
50
75
100
125
150
175
0
10
20
30
40
50
T , Case Temperature ( C)
I , Drain Current (A)
°
C
D
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
V
DS
Pulse Width
1 µs
Duty Factor
0.1 %
R
D
V
GS
R
G
D.U.T.
V
GS
+
-
V
DD
Fig 10a. Switching Time Test Circuit
Fig 10b. Switching Time Waveforms
0.01
0.1
1
10
0.00001
0.0001
0.001
0.01
0.1
Notes:
1. Duty factor D = t / t
2. Peak T = P
x Z
+ T
1
2
J
DM
thJC
C
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Ther
m
a
l
R
e
sponse
(Z
)
1
thJC
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)