ChipFind - Datasheet

Part Number IRF9Z24NS

Download:  PDF   ZIP
Äîêóìåíòàöèÿ è îïèñàíèÿ www.docs.chipfind.ru
background image
IRF9Z24NS/L
HEXFET
®
Power MOSFET
PD - 91742A
l
Advanced Process Technology
l
Surface Mount (IRF9Z24NS)
l
Low-profile through-hole (IRF9Z24NL)
l
175°C Operating Temperature
l
P-Channel
l
Fast Switching
l
Fully Avalanche Rated
7/16/99
S
D
G
Parameter
Typ.
Max.
Units
R
JC
Junction-to-Case
­­­
3.3
R
JA
Junction-to-Ambient ( PCB Mounted,steady-state)**
­­­
40
Thermal Resistance
°C/W
Parameter
Max.
Units
I
D
@ T
C
= 25°C
Continuous Drain Current, V
GS
@ -10V
-12
I
D
@ T
C
= 100°C
Continuous Drain Current, V
GS
@ -10V
-8.5
A
I
DM
Pulsed Drain Current
-48
P
D
@T
A
= 25°C
Power Dissipation
3.8
W
P
D
@T
C
= 25°C
Power Dissipation
45
W
Linear Derating Factor
0.30
W/°C
V
GS
Gate-to-Source Voltage
± 20
V
E
AS
Single Pulse Avalanche Energy
96
mJ
I
AR
Avalanche Current
-7.2
A
E
AR
Repetitive Avalanche Energy
4.5
mJ
dv/dt
Peak Diode Recovery dv/dt
-5.0
V/ns
T
J
Operating Junction and
-55 to + 175
T
STG
Storage Temperature Range
°C
Soldering Temperature, for 10 seconds
300 (1.6mm from case )
Absolute Maximum Ratings
Fifth Generation HEXFETs from International Rectifier
utilize advanced processing techniques to achieve
extremely low on-resistance per silicon area. This
benefit, combined with the fast switching speed and
ruggedized device design that HEXFET Power MOSFETs
are well known for, provides the designer with an extremely
efficient and reliable device for use in a wide variety of
applications.
The D
2
Pak is a surface mount power package capable of
accommodating die sizes up to HEX-4. It provides the
highest power capability and the lowest possible on-
resistance in any existing surface mount package. The
D
2
Pak is suitable for high current applications because of
its low internal connection resistance and can dissipate
up to 2.0W in a typical surface mount application.
The through-hole version (IRF9Z24NL) is available for
low-profile applications.
Description
V
DSS
= -55V
R
DS(on)
= 0.175
I
D
= -12A
2
D P ak

T O -26 2
www.irf.com
1
background image
IRF9Z24NS/L
2
www.irf.com
Starting T
J
= 25°C, L = 3.7mH
R
G
= 25
, I
AS
= -7.2A. (See Figure 12)
Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
Notes:
** When mounted on 1" square PCB (FR-4 or G-10 Material ).
For recommended footprint and soldering techniques refer to application note #AN-994.
I
SD
-7.2A, di/dt
-280A/µs, V
DD
V
(BR)DSS
,
T
J
175°C
Pulse width
300µs; duty cycle
2%.
Uses IRF9Z24N data and test conditions
Parameter
Min. Typ. Max. Units
Conditions
I
S
Continuous Source Current
MOSFET symbol
(Body Diode)
­­­
­­­
showing the
I
SM
Pulsed Source Current
integral reverse
(Body Diode) ·
­­­
­­­
p-n junction diode.
V
SD
Diode Forward Voltage
­­­
­­­
-1.6
V
T
J
= 25°C, I
S
= -7.2A, V
GS
= 0V
t
rr
Reverse Recovery Time
­­­
47
71
ns
T
J
= 25°C, I
F
= -7.2A
Q
rr
Reverse RecoveryCharge
­­­
84
130
nC
di/dt = -100A/µs
t
on
Forward Turn-On Time
Intrinsic turn-on time is negligible (turn-on is dominated by L
S
+L
D
)
Source-Drain Ratings and Characteristics
A
S
D
G
Parameter
Min. Typ. Max. Units
Conditions
V
(BR)DSS
Drain-to-Source Breakdown Voltage
-55
­­­
­­­
V
V
GS
= 0V, I
D
= -250µA
V
(BR)DSS
/
T
J
Breakdown Voltage Temp. Coefficient
­­­
-0.05 ­­­
V/°C
Reference to 25°C, I
D
= -1mA
R
DS(on)
Static Drain-to-Source On-Resistance
­­­
­­­ 0.175
V
GS
= -10V, I
D
= -7.2A
V
GS(th)
Gate Threshold Voltage
-2.0
­­­
-4.0
V
V
DS
= V
GS
, I
D
= -250µA
g
fs
Forward Transconductance
2.5
­­­
­­­
S
V
DS
= -25V, I
D
= -7.2A
­­­
­­­
-25
µA
V
DS
= -55V, V
GS
= 0V
­­­
­­­
-250
V
DS
= -44V, V
GS
= 0V, T
J
= 150°C
Gate-to-Source Forward Leakage
­­­
­­­
100
V
GS
= 20V
Gate-to-Source Reverse Leakage
­­­
­­­
-100
nA
V
GS
= -20V
Q
g
Total Gate Charge
­­­
­­­
19
I
D
= -7.2A
Q
gs
Gate-to-Source Charge
­­­
­­­
5.1
nC
V
DS
= -44V
Q
gd
Gate-to-Drain ("Miller") Charge
­­­
­­­
10
V
GS
= -10V, See Fig. 6 and 13
t
d(on)
Turn-On Delay Time
­­­
13
­­­
V
DD
= -28V
t
r
Rise Time
­­­
55
­­­
I
D
= -7.2A
t
d(off)
Turn-Off Delay Time
­­­
23
­­­
R
G
= 24
t
f
Fall Time
­­­
37
­­­
R
D
= 3.7
, See Fig. 10
Between lead,
and center of die contact
C
iss
Input Capacitance
­­­
350
­­­
V
GS
= 0V
C
oss
Output Capacitance
­­­
170
­­­
pF
V
DS
= -25V
C
rss
Reverse Transfer Capacitance
­­­
92
­­­
= 1.0MHz, See Fig. 5
Electrical Characteristics @ T
J
= 25°C (unless otherwise specified)
I
GSS
ns
I
DSS
Drain-to-Source Leakage Current
nH
7.5
L
S
Internal Source Inductance
-12
-48
background image
IRF9Z24NS/L
www.irf.com
3
Fig 4. Normalized On-Resistance
Vs. Temperature
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
1
1 0
1 0 0
0 . 1
1
1 0
1 0 0
D
D S
2 0µ s P U LS E W ID T H
T = 2 5°C
A
-I
,
D
r
a
i
n
-
t
o
-S
o
u
rc
e
C
u
rre
n
t
(A
)
-V , D rain -to-S ourc e V o ltage (V )
VGS
TO P - 15V
- 10V
- 8.0V
- 7.0V
- 6.0V
- 5.5V
- 5.0V
BOT TOM - 4.5V
-4.5 V
c
1
1 0
1 0 0
0.1
1
1 0
1 0 0
D
D S
A
-
I
,
Dr
ai
n
-
t
o
-
S
ou
r
c
e Cur
r
e
n
t
(
A
)
-V , D rain-to-S ource V oltage (V )
VGS
TOP - 15V
- 10V
- 8.0V
- 7.0V
- 6.0V
- 5.5V
- 5.0V
BOTTOM - 4.5V
-4 .5 V
2 0µ s P U LS E W ID T H
T = 1 75 °C
C
1
1 0
1 0 0
4
5
6
7
8
9
1 0
T = 25 °C
J
G S
D
A
-
I
,

D
r
ai
n-
t
o
-
S
ourc
e
C
u
rr
ent
(
A
)
-V , Ga te -to-S ource V olta ge (V )
V = -2 5 V
2 0µ s P U L S E W ID TH
DS
T = 1 7 5 °C
J
0 . 0
0 . 5
1 . 0
1 . 5
2 . 0
- 6 0
- 4 0
- 2 0
0
2 0
4 0
6 0
8 0
1 0 0 1 2 0 1 4 0 1 6 0 1 8 0
J
T , Junction T em perature (°C )
R
, D
r
a
i
n
-
to
-
S
o
u
r
c
e
O
n
R
e
s
i
s
ta
n
c
e
D
S
(
on)
(N
o
r
m
a
l
i
z
e
d
)
A
V = -1 0V
G S
I = -12 A
D
T
J
= 25°C
T
J
= 175°C
background image
IRF9Z24NS/L
4
www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
0
4
8
1 2
1 6
2 0
0
5
1 0
1 5
2 0
2 5
G
GS
A
-
V
, G
a
te
-
t
o
-
S
o
u
r
c
e
V
o
l
t
a
g
e
(
V
)
Q , Total G ate C harge (nC )
F O R T E S T C IR C U IT
S E E F IG U R E 1 3
I = -7 .2 A
V = -44 V
V = -28 V
D
D S
D S
0 . 1
1
1 0
1 0 0
0 . 4
0 . 6
0 . 8
1 . 0
1 . 2
1 . 4
1 . 6
1 . 8
T = 2 5°C
T = 15 0°C
J
J
V = 0V
G S
S D
SD
A
-
I

,
Rev
er
s
e
D
r
a
i
n Cur
r
e
n
t
(
A
)
-V , S ourc e-to-D ra in V oltage (V )
1
1 0
1 0 0
1
1 0
1 0 0
O P E R A TIO N IN T H IS A R E A L IM IT E D
B Y R
D S (o n)
1 0 m s
A
-I
,
D
r
a
i
n
C
u
rre
n
t
(A
)
-V , D ra in -to -S o urc e V o lta g e (V )
D S
D
1 0 µ s
1 0 0 µ s
1 m s
T = 25 °C
T = 17 5°C
S ing le P u ls e
C
J
0
1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0
7 0 0
1
1 0
1 0 0
C
,
Cap
ac
i
t
a
n
c
e
(
p
F
)
D S
V , D rain-to-S ourc e V oltage (V )
A
V = 0V , f = 1M H z
C = C + C , C S H O R T E D
C = C
C = C + C
G S
is s g s g d d s
rs s g d
o ss d s gd
C
is s
C
os s
C
rs s
background image
IRF9Z24NS/L
www.irf.com
5
Fig 10a. Switching Time Test Circuit
Fig 10b. Switching Time Waveforms
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 9. Maximum Drain Current Vs.
Case Temperature
V
DS
-10V
Pulse Width
1
µs
Duty Factor
0.1 %
R
D
V
GS
V
DD
R
G
D.U.T.
+
-
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
0
3
6
9
1 2
2 5
5 0
7 5
1 0 0
1 2 5
1 5 0
1 7 5
C
T , C as e Tem peratu re (°C )
A
-I
,
D
r
a
i
n
C
u
rre
n
t
(A
m
p
s
)
D
0 . 0 1
0 . 1
1
1 0
0 . 0 0 0 0 1
0 . 0 0 0 1
0 . 0 0 1
0 . 0 1
0 . 1
1
t , R e c ta n g u la r P u lse D u ra tio n (s e c )
1
th
J
C
D = 0 .5 0
0 .0 1
0 .0 2
0 .0 5
0 .1 0
0 .2 0
S IN G L E P U L S E
(T H E R M A L R E S P O N S E )
A
T
h
er
m
a
l
R
e
s
p
on
s
e
(
Z

)
P
t 2
1
t
D M
N o tes :
1 . D u ty f ac to r D = t / t
2 . P e a k T = P x Z + T
1
2
J
D M
th J C
C