ChipFind - Datasheet

Part Number IRF737LC

Download:  PDF   ZIP
HEXFET
®
Power MOSFET
IRF737LC
PD - 9.1314
V
DSS
= 300V
R
DS(on)
= 0.75
I
D
= 6.1A
Parameter
Min.
Typ.
Max.
Units
R
JC
Junction-to-Case
­­­­
­­­­
1.7
R
CS
Case-to-Sink, Flat, Greased Surface
­­­­
0.50
­­­­
°C/W
R
JA
Junction-to-Ambient
­­­­
­­­­
62
Thermal Resistance
Parameter
Max.
Units
I
D
@ T
C
= 25°C
Continuous Drain Current, V
GS
@ 10V
6.1
I
D
@ T
C
= 100°C
Continuous Drain Current, V
GS
@ 10V
3.9
A
I
DM
Pulsed Drain Current
24
P
D
@T
C
= 25°C
Power Dissipation
74
W
Linear Derating Factor
0.59
W/°C
V
GS
Gate-to-Source Voltage
±30
V
E
AS
Single Pulse Avalanche Energy
120
mJ
I
AR
Avalanche Current
6.1
A
E
AR
Repetitive Avalanche Energy
7.4
mJ
dv/dt
Peak Diode Recovery dv/dt
3.4
V/ns
T
J
Operating Junction and
-55 to + 150
T
STG
Storage Temperature Range
°C
Soldering Temperature, for 10 seconds
300 (1.6mm from case)
Mounting torque, 6-32 or M3 screw.
10 lbf·in (1.1N·m)
Absolute Maximum Ratings
Reduced Gate Drive Requirement
Enhanced 30V V
GS
Rating
Reduced C
ISS
, C
OSS
, C
RSS
Extremely High Frequency Operation
Repetitive Avalanche Rated
This new series of Low Charge HEXFETs achieve
significantly lower gate charge over conventional MOSFETs.
Utilizing the new LCDMOS technology, the device
improvements are achieved without added product cost,
allowing for reduced gate drive requirements and total
system savings. In addition, reduced switching losses and
improved efficiency are achievable in a variety of high
frequency applications. Frequencies of a few MHz at high
current are possible using the new Low Charge MOSFETs.
These device improvements combined with the proven
ruggedness and reliability that are characteristics of
HEXFETs offer the designer a new standard in power
transistors for switching applications.
Description
PRELIMINARY
IRF737LC
Parameter
Min. Typ. Max. Units
Conditions
V
(BR)DSS
Drain-to-Source Breakdown Voltage
300
­­­
­­­
V
V
GS
= 0V, I
D
= 250µA
V
(BR)DSS
/
T
J
Breakdown Voltage Temp. Coefficient
­­­ 0.391 ­­­
V/°C Reference to 25°C, I
D
= 1mA
R
DS(on)
Static Drain-to-Source On-Resistance
­­­
­­­ 0.75
V
GS
= 10V, I
D
= 3.7A
V
GS(th)
Gate Threshold Voltage
2.0
­­­
4.0
V
V
DS
= V
GS
, I
D
= 250µA
g
fs
Forward Transconductance
2.7
­­­
­­­
S
V
DS
= 50V, I
D
= 3.7A
­­­
­­­
25
V
DS
= 300V, V
GS
= 0V
­­­
­­­
250
V
DS
= 240V, V
GS
= 0V, T
J
= 150°C
Gate-to-Source Forward Leakage
­­­
­­­
100
V
GS
= 20V
Gate-to-Source Reverse Leakage
­­­
­­­ -100
V
GS
= -20V
Q
g
Total Gate Charge
­­­
­­­
17
I
D
= 6.1A
Q
gs
Gate-to-Source Charge
­­­
­­­
4.8
nC
V
DS
= 240V
Q
gd
Gate-to-Drain ("Miller") Charge
­­­
­­­
7.6
V
GS
= 10V, See Fig. 6 and 13
t
d(on)
Turn-On Delay Time
­­­
6.6
­­­
V
DD
= 150V
t
r
Rise Time
­­­
21
­­­
I
D
= 6.1A
t
d(off)
Turn-Off Delay Time
­­­
13
­­­
R
G
= 12
t
f
Fall Time
­­­
12
­­­
R
D
= 24
,
See Fig. 10
Between lead,
6mm (0.25in.)
from package
and center of die contact
C
iss
Input Capacitance
­­­
430
­­­
V
GS
= 0V
C
oss
Output Capacitance
­­­
120
­­­
pF
V
DS
= 25V
C
rss
Reverse Transfer Capacitance
­­­
9.2
­­­
= 1.0MHz, See Fig. 5
nH
µA
nA
I
DSS
Drain-to-Source Leakage Current
I
GSS
L
S
Internal Source Inductance
­­­
­­­
ns
4.5
7.5
Electrical Characteristics @ T
J
= 25°C (unless otherwise specified)
­­­
L
D
Internal Drain Inductance
­­­
­­­
­­­
Parameter
Min. Typ. Max. Units
Conditions
I
S
Continuous Source Current
MOSFET symbol
(Body Diode)
showing the
I
SM
Pulsed Source Current
integral reverse
(Body Diode)
p-n junction diode.
V
SD
Diode Forward Voltage
­­­
­­­
1.6
V
T
J
= 25°C, I
S
= 6.1A, V
GS
= 0V
t
rr
Reverse Recovery Time
­­­
320
490
ns
T
J
= 25°C, I
F
= 6.1A
Q
rr
Reverse RecoveryCharge
­­­
1.5
2.2
µC
di/dt = 100A/µs
Source-Drain Ratings and Characteristics
A
­­­
­­­
24
­­­
­­­
6.1
Notes:
Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
I
SD
6.1A, di/dt
270A/µs, V
DD
V
(BR)DSS
,
T
J
150°C
Pulse width
300µs; duty cycle
2%.
V
DD
= 25V, starting T
J
= 25°C, L = 5.7mH
R
G
= 25
, I
AS
= 6.1A. (See Figure 12)
IRF737LC
Fig 1. Typical Output Characteristics,
T
J
= 25
o
C
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance
Vs. Temperature
Fig 2. Typical Output Characteristics,
T
J
= 150
o
C
0.01
0.1
1
10
100
0.1
1
10
100
I



,

D
r
a
i
n
-
t
o
-
S
o
u
r
c
e

C
u
r
r
e
n
t

(
A
)
D
V , Drain-to-Source Voltage (V)
DS
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
20µs PULSE WIDTH
T = 25°C
C
A
4.5V
0.01
0.1
1
10
100
0.1
1
10
100
I



,

D
r
a
i
n
-
t
o
-
S
o
u
r
c
e

C
u
r
r
e
n
t

(
A
)
D
V , Drain-to-Source Voltage (V)
DS
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
20µs PULSE WIDTH
T = 150°C
C
A
4.5V
0.01
0.1
1
10
100
4
5
6
7
8
9
10
T = 25°C
T = 150°C
J
J
GS
V , Gate-to-Source Voltage (V)
D
I



,

D
r
a
i
n
-
t
o
-
S
o
u
r
c
e

C
u
r
r
e
n
t

(
A
)
V = 50V
20µs PULSE WIDTH
DS
A
0.0
0.5
1.0
1.5
2.0
2.5
3.0
-60 -40 -20
0
20
40
60
80
100 120 140 160
J
T , Junction Temperature (°C)
R











,


D
r
a
i
n
-
t
o
-
S
o
u
r
c
e

O
n

R
e
s
i
s
t
a
n
c
e
D
S
(
o
n
)
(
N
o
r
m
a
l
i
z
e
d
)
V = 10V
GS
A
I = 6.1A
D
IRF737LC
Fig 7. Typical Source-Drain Diode
Forward Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
0
100
200
300
400
500
600
700
800
1
10
100
C
,

C
a
p
a
c
i
t
a
n
c
e

(
p
F
)
DS
V , Drain-to-Source Voltage (V)
A
V = 0V, f = 1MHz
C = C + C , C SHORTED
C = C
C = C + C
GS
iss gs gd ds
rss gd
oss ds gd
C
iss
C
oss
C
rss
0
4
8
12
16
20
0
4
8
12
16
Q , Total Gate Charge (nC)
G
V





,

G
a
t
e
-
t
o
-
S
o
u
r
c
e

V
o
l
t
a
g
e

(
V
)
G
S
A
FOR TEST CIRCUIT
SEE FIGURE 13
I = 6.1A
V = 240V
V = 150V
V = 60V
D
DS
DS
DS
0.1
1
10
100
1
10
100
1000
V , Drain-to-Source Voltage (V)
DS
I



,

D
r
a
i
n

C
u
r
r
e
n
t

(
A
)
OPERATION IN THIS AREA LIMITED
BY R
D
DS(on)
T = 25°C
T = 150°C
Single Pulse
C
J
10µs
100µs
1ms
10ms
A
0.1
1
10
100
0.2
0.4
0.6
0.8
1.0
1.2
1.4
T = 25°C
T = 150°C
J
J
V = 0V
GS
V , Source-to-Drain Voltage (V)
I





,

R
e
v
e
r
s
e

D
r
a
i
n

C
u
r
r
e
n
t

(
A
)
SD
S
D
A
Fig 9. Maximum Drain Current Vs.
Case Temperature
IRF737LC
Fig 10a. Switching Time Test Circuit
V
DS
Pulse Width
1
µs
Duty Factor
0.1 %
Fig 10b. Switching Time Waveforms
R
D
V
GS
R
G
D.U.T.
10V
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
V
DD
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
25
50
75
100
125
150
C
I


,

D
r
a
i
n

C
u
r
r
e
n
t

(
A
m
p
s
)
D
T , Case Temperature (°C)
A
0.01
0.1
1
10
0.00001
0.0001
0.001
0.01
0.1
1
t , Rectangular Pulse Duration (sec)
1
t
h
J
C
D = 0.50
0.01
0.02
0.05
0.10
0.20
SINGLE PULSE
(THERMAL RESPONSE)
A
T
h
e
r
m
a
l

R
e
s
p
o
n
s
e

(
Z







)
P
t
2
1
t
D M
N o te s :
1 . D u ty fa c to r D = t / t
2 . P e a k T = P x Z + T
1
2
J
D M
th J C
C