ChipFind - Datasheet

Part Number IRF644N

Download:  PDF   ZIP
IRF644N
IRF644NS
IRF644NL
HEXFET
®
Power MOSFET
3/15/01
www.irf.com
1
V
DSS
= 250V
R
DS(on)
= 240m
I
D
= 14A
S
D
G
PD - 94107
Absolute Maximum Ratings
Parameter
Max.
Units
I
D
@ T
C
= 25°C
Continuous Drain Current, V
GS
@ 10V
14
I
D
@ T
C
= 100°C
Continuous Drain Current, V
GS
@ 10V
9.9
A
I
DM
Pulsed Drain Current
56
P
D
@T
C
= 25°C
Power Dissipation
150
W
Linear Derating Factor
1.0
W/°C
V
GS
Gate-to-Source Voltage
± 20
V
E
AS
Single Pulse Avalanche Energy
180
mJ
I
AR
Avalanche Current
8.4
A
E
AR
Repetitive Avalanche Energy
15
mJ
dv/dt
Peak Diode Recovery dv/dt
7.9
V/ns
T
J
Operating Junction and
-55 to + 175
T
STG
Storage Temperature Range
Soldering Temperature, for 10 seconds
300 (1.6mm from case )
°C
Mounting torque, 6-32 or M3 srew
10 lbf·in (1.1N·m)
D
2
Pak
IRF644NS
TO-220AB
IRF644N
TO-262
IRF644NL
Description
l
Advanced Process Technology
l
Dynamic dv/dt Rating
l
175°C Operating Temperature
l
Fast Switching
l
Fully Avalanche Rated
l
Ease of Paralleling
l
Simple Drive Requirements
Fifth Generation HEXFET
®
Power MOSFETs from
International Rectifier utilize advanced processing
techniques to achieve extremely low on-resistance per
silicon area. This benefit, combined with the fast switching
speed and ruggedized device design that HEXFET Power
MOSFETs are well known for, provides the designer with an
extremely efficient and reliable device for use in a wide
variety of applications.
The TO-220 package is universally preferred for all
commercial-industrial applications at power dissipation levels
to approximately 50 watts. The low thermal resistance and
low package cost of the TO-220 contribute to its wide
acceptance throughout the industry.
The D
2
Pak is a surface mount power package capable of
accommodating die sizes up to HEX-4. It provides the
highest power capability and the lowest possible on-
resistance in any existing surface mount package. The
D
2
Pak is suitable for high current applications because of its
low internal connection resistance and can dissipate up to
2.0W in a typical surface mount application.
IRF644N/644NS/644NL
2
www.irf.com
S
D
G
Parameter
Min. Typ. Max. Units
Conditions
I
S
Continuous Source Current
MOSFET symbol
(Body Diode)
­­­
­­­
showing the
I
SM
Pulsed Source Current
integral reverse
(Body Diode)
­­­
­­­
p-n junction diode.
V
SD
Diode Forward Voltage
­­­
­­­
1.3
V
T
J
= 25°C, I
S
= 14A, V
GS
= 0V
t
rr
Reverse Recovery Time
­­­
165
250
ns
T
J
= 25°C, I
F
= 14A
Q
rr
Reverse Recovery Charge
­­­
1.0
1.6
nC
di/dt = 100A/µs
t
on
Forward Turn-On Time
Intrinsic turn-on time is negligible (turn-on is dominated by L
S
+L
D
)
Source-Drain Ratings and Characteristics
14
56
A
Parameter
Min. Typ. Max. Units
Conditions
V
(BR)DSS
Drain-to-Source Breakdown Voltage
250
­­­
­­­
V
V
GS
= 0V, I
D
= 250µA
V
(BR)DSS
/
T
J
Breakdown Voltage Temp. Coefficient
­­­
0.33
­­­
V/°C
Reference to 25°C, I
D
= 1mA
R
DS(on)
Static Drain-to-Source On-Resistance
­­­
­­­
240
m
V
GS
= 10V, I
D
= 8.4A
V
GS(th)
Gate Threshold Voltage
2.0
­­­
4.0
V
V
DS
= V
GS
, I
D
= 250µA
g
fs
Forward Transconductance
8.8
­­­
­­­
S
V
DS
= 50V, I
D
= 8.4A
­­­
­­­
25
µA
V
DS
= 250V, V
GS
= 0V
­­­
­­­
250
V
DS
= 200V, V
GS
= 0V, T
J
= 150°C
Gate-to-Source Forward Leakage
­­­
­­­
100
V
GS
= 20V
Gate-to-Source Reverse Leakage
­­­
­­­
-100
nA
V
GS
= -20V
Q
g
Total Gate Charge
­­­
­­­
54
I
D
= 8.4A
Q
gs
Gate-to-Source Charge
­­­
­­­
9.2
nC
V
DS
= 200V
Q
gd
Gate-to-Drain ("Miller") Charge
­­­
­­­
26
V
GS
= 10V, See Fig. 6 and 13
t
d(on)
Turn-On Delay Time
­­­
10
­­­
V
DD
= 125V
t
r
Rise Time
­­­
21
­­­
I
D
= 8.4A
t
d(off)
Turn-Off Delay Time
­­­
30
­­­
R
G
= 6.2
t
f
Fall Time
­­­
17
­­­
V
GS
= 10V, See Fig. 10
Between lead,
­­­
­­­
6mm (0.25in.)
from package
and center of die contact
C
iss
Input Capacitance
­­­
1060 ­­­
V
GS
= 0V
C
oss
Output Capacitance
­­­
140
­­­
V
DS
= 25V
C
rss
Reverse Transfer Capacitance
­­­
38
­­­
pF
= 1.0MHz, See Fig. 5
nH
Electrical Characteristics @ T
J
= 25°C (unless otherwise specified)
L
D
Internal Drain Inductance
L
S
Internal Source Inductance
­­­
­­­
S
D
G
I
GSS
ns
4.5
7.5
I
DSS
Drain-to-Source Leakage Current
Thermal Resistance
Parameter
Typ.
Max.
Units
R
JC
Junction-to-Case
­­­
1.0
R
CS
Case-to-Sink, Flat, Greased Surface
0.50
­­­
°C/W
R
JA
Junction-to-Ambient
­­­
62
R
JA
Junction-to-Ambient (PCB mount)**
­­­
40
www.irf.com
3
IRF644N/644NS/644NL
Fig 4. Normalized On-Resistance
Vs. Temperature
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
0.1
1
10
100
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
I D
, Drain-to-Source Current (A)
4.5V
20µs PULSE WIDTH
Tj = 25°C
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
0.1
1
10
100
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
I D
, Drain-to-Source Current (A)
4.5V
20µs PULSE WIDTH
Tj = 175°C
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
1
10
100
4
6
8
10
11
13
15
V = 50V
20µs PULSE WIDTH
DS
V , Gate-to-Source Voltage (V)
I , Drain-to-Source Current (A)
GS
D
T = 175 C
J
°
T = 25 C
J
°
-60 -40 -20
0
20 40 60 80 100 120 140 160 180
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
T , Junction Temperature ( C)
R , Drain-to-Source On Resistance
(Normalized)
J
DS(on)
°
V
=
I =
GS
D
10V
14A
IRF644N/644NS/644NL
4
www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
1
10
100
VDS, Drain-to-Source Voltage (V)
10
100
1000
10000
C, Capacitance(pF)
Coss
Crss
Ciss
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
1
10
100
1000
VDS , Drain-toSource Voltage (V)
0.1
1
10
100
1000
I D
, Drain-to-Source Current (A)
Tc = 25°C
Tj = 175°C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100µsec
0.1
1
10
100
0.0
0.4
0.8
1.1
1.5
V ,Source-to-Drain Voltage (V)
I , Reverse Drain Current (A)
SD
SD
V = 0 V
GS
T = 175 C
J
°
T = 25 C
J
°
0
12
24
36
48
60
0
4
8
12
16
20
Q , Total Gate Charge (nC)
V , Gate-to-Source Voltage (V)
G
GS
I =
D
8.4A
V
= 50V
DS
V
= 125V
DS
V
= 200V
DS
www.irf.com
5
IRF644N/644NS/644NL
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 9. Maximum Drain Current Vs.
Case Temperature
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
V
DS
Pulse Width
1
µs
Duty Factor
0.1 %
R
D
V
GS
R
G
D.U.T.
V
GS
+
-
V
DD
Fig 10a. Switching Time Test Circuit
Fig 10b. Switching Time Waveforms
25
50
75
100
125
150
175
0
3
6
9
12
15
T , Case Temperature ( C)
I , Drain Current (A)
°
C
D
0.01
0.1
1
10
0.00001
0.0001
0.001
0.01
0.1
1
Notes:
1. Duty factor D = t / t
2. Peak T = P
x Z
+ T
1
2
J
DM
thJC
C
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Thermal Response
(Z )
1
thJC
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)