ChipFind - Datasheet

Part Number CY7C1339G

Download:  PDF   ZIP
PRELIMINARY
4-Mbit (128K x 32) Pipelined Sync SRAM
CY7C1339G
Cypress Semiconductor Corporation
·
3901 North First Street
·
San Jose
,
CA 95134
·
408-943-2600
Document #: 38-05520 Rev. *A
Revised November 10, 2004
Features
· Registered inputs and outputs for pipelined operation
· 128K × 32 common I/O architecture
· 3.3V core power supply
· 2.5V / 3.3V I/O operation
· Fast clock-to-output times
-- 2.6 ns (for 250-MHz device)
-- 2.8 ns (for 200-MHz device)
-- 3.5 ns (for 166-MHz device)
-- 4.0 ns (for 133-MHz device)
· Provide high-performance 3-1-1-1 access rate
· User-selectable burst counter supporting Intel
®
Pentium
®
interleaved or linear burst sequences
· Separate processor and controller address strobes
· Synchronous self-timed writes
· Asynchronous output enable
· Lead-Free 100-pin TQFP and 119-ball BGA packages
· "ZZ" Sleep Mode Option
Functional Description
[1]
The CY7C1339G SRAM integrates 131,072 x 32 SRAM cells
with advanced synchronous peripheral circuitry and a two-bit
counter for internal burst operation. All synchronous inputs are
gated by registers controlled by a positive-edge-triggered
Clock Input (CLK). The synchronous inputs include all
addresses, all data inputs, address-pipelining Chip Enable
(CE
1
), depth-expansion Chip Enables (CE
2
and
CE
3
), Burst
Control inputs (ADSC, ADSP, and ADV), Write Enables
(BW
[A:D]
, and BWE), and Global Write (GW). Asynchronous
inputs include the Output Enable (OE) and the ZZ pin.
Addresses and chip enables are registered at rising edge of
clock when either Address Strobe Processor (ADSP) or
Address Strobe Controller (ADSC) are active. Subsequent
burst addresses can be internally generated as controlled by
the Advance pin (ADV).
Address, data inputs, and write controls are registered on-chip
to initiate a self-timed Write cycle.This part supports Byte Write
operations (see Pin Descriptions and Truth Table for further
details). Write cycles can be one to four bytes wide as
controlled by the byte write control inputs. GW when active
LOW causes all bytes to be written.
The CY7C1339G operates from a +3.3V core power supply
while all outputs may operate with either a +2.5 or +3.3V
supply. All inputs and outputs are JEDEC-standard
JESD8-5-compatible.
1
Note:
1. For best­practices recommendations, please refer to the Cypress application note System Design Guidelines on www.cypress.com.
A DDRESS
REGISTER
A DV
CLK
BURST
COUNTER
A ND
LOGIC
CLR
Q1
Q0
A DSP
A DSC
M ODE
BW E
GW
CE
1
CE
2
CE
3
OE
ENA BLE
REGISTER
OUTPUT
REGISTERS
SENSE
A M PS
OUTPUT
BUFFERS
E
PIPELINED
ENA BLE
INPUT
REGISTERS
A 0, A 1, A
BW
B
BW
C
BW
D
BW
A
M EM ORY
A RRA Y
D Q s
SLEEP
CONTROL
ZZ
A
[1:0]
2
DQ
A
BY TE
W RITE REGISTER
DQ
B
BY TE
W RITE REGISTER
DQ
C
BY TE
W RITE REGISTER
DQ
D
BY TE
W RITE REGISTER
DQ
A
BY TE
W RITE DRIVER
DQ
B
BY TE
W RITE DRIVER
DQ
C
BY TE
W RITE DRIVER
DQ
D
BY TE
W RITE DRIVER
Logic Block Diagram
PRELIMINARY
CY7C1339G
Document #: 38-05520 Rev. *A
Page 2 of 17
Pin Configurations
Selection Guide
250 MHz
200 MHz
166 MHz
133 MHz
Unit
Maximum Access Time
2.6
2.8
3.5
4.0
ns
Maximum Operating Current
325
265
240
225
mA
Maximum CMOS Standby Current
40
40
40
40
mA
Shaded area contains advanced information. Please contact your local Cypress sales representative for availability of these parts.
A
A
A
A
A
1
A
0
NC NC
V
SS
V
DD
NC
NC
A
A
A
A
A
A
A
NC
DQ
B
DQ
B
V
DDQ
V
SSQ
DQ
B
DQ
B
DQ
B
DQ
B
V
SSQ
V
DDQ
DQ
B
DQ
B
V
SS
NC
V
DD
ZZ
DQ
A
DQ
A
V
DDQ
V
SSQ
DQ
A
DQ
A
DQ
A
DQ
A
V
SSQ
V
DDQ
DQ
A
DQ
A
NC
NC
DQ
C
DQ
C
V
DDQ
V
SSQ
DQ
C
DQ
C
DQ
C
DQ
C
V
SSQ
V
DDQ
DQ
C
DQ
C
NC
V
DD
NC
V
SS
DQ
D
DQ
D
V
DDQ
V
SSQ
DQ
D
DQ
D
DQ
D
DQ
D
V
SSQ
V
DDQ
DQ
D
DQ
D
NC
A
A
CE
1
CE
2
BW
D
BW
C
BW
B
BW
A
CE
3
V
DD
V
SS
CLK
GW
BWE
OE
ADSC
ADSP
ADV
A
A
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
MODE
BYTE A
BYTE B
BYTE D
BYTE C
100-pin TQFP
CY7C1339G
PRELIMINARY
CY7C1339G
Document #: 38-05520 Rev. *A
Page 3 of 17
Pin Configurations
(continued)
Pin Definitions
Name
I/O
Description
A
0
, A
1
, A
Input-
Synchronous
Address Inputs used to select one of the 128K address locations. Sampled at the rising edge
of the CLK if ADSP or ADSC is active LOW, and CE
1
,
CE
2
, and
CE
3
are sampled active. A1, A0
are fed to the two-bit counter..
BW
A,
BW
B
BW
C,
BW
D
Input-
Synchronous
Byte Write Select Inputs, active LOW. Qualified with BWE to conduct byte writes to the SRAM.
Sampled on the rising edge of CLK.
GW
Input-
Synchronous
Global Write Enable Input, active LOW. When asserted LOW on the rising edge of CLK, a global
write is conducted (ALL bytes are written, regardless of the values on BW
[A:D]
and BWE).
BWE
Input-
Synchronous
Byte Write Enable Input, active LOW. Sampled on the rising edge of CLK. This signal must be
asserted LOW to conduct a byte write.
CLK
Input-
Clock
Clock Input. Used to capture all synchronous inputs to the device. Also used to increment the
burst counter when ADV is asserted LOW, during a burst operation.
CE
1
Input-
Synchronous
Chip Enable 1 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with
CE
2
and CE
3
to select/deselect the device. ADSP is ignored if CE
1
is HIGH. CE
1
is sampled only
when a new external address is loaded.
CE
2
Input-
Synchronous
Chip Enable 2 Input, active HIGH. Sampled on the rising edge of CLK. Used in conjunction with
CE
1
and CE
3
to select/deselect the device.CE
2
is sampled only when a new external address is
loaded.
CE
3
Input-
Synchronous
Chip Enable 3 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with
CE
1
and
CE
2
to select/deselect the device. CE
3
is sampled only when a new external address is
loaded.Not connected for BGA. Where referenced, CE
3
is assumed active throughout this
document for BGA.
OE
Input-
Asynchronous
Output Enable, asynchronous input, active LOW. Controls the direction of the I/O pins. When
LOW, the I/O pins behave as outputs. When deasserted HIGH, I/O pins are tri-stated, and act as
input data pins. OE is masked during the first clock of a read cycle when emerging from a
deselected state.
2
3
4
5
6
7
1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
DDQ
NC
NC
NC
DQ
C
DQ
D
DQ
C
DQ
D
A
A
A
A
ADSP
V
DDQ
CE
2
A
DQ
C
V
DDQ
DQ
C
V
DDQ
V
DDQ
V
DDQ
DQ
D
DQ
D
NC
NC
V
DDQ
V
DD
CLK
V
DD
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
V
DDQ
V
DDQ
V
DDQ
A
A
A
A
NC
A
A
A
A
A
A
A0
A1
DQ
A
DQ
C
DQ
A
DQ
A
DQ
A
DQ
B
DQ
B
DQ
B
DQ
B
DQ
B
DQ
B
DQ
B
DQ
A
DQ
A
DQ
A
DQ
A
DQ
B
V
DD
DQ
C
DQ
C
DQ
C
V
DD
DQ
D
DQ
D
DQ
D
DQ
D
ADSC
NC
CE
1
OE
ADV
GW
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
NC
MODE
NC
NC
BW
B
BW
c
NC
V
DD
NC
BW
A
NC
BWE
BW
D
ZZ
CY7C1339G (128K × 32)
119-ball BGA
PRELIMINARY
CY7C1339G
Document #: 38-05520 Rev. *A
Page 4 of 17
Functional Overview
All synchronous inputs pass through input registers controlled
by the rising edge of the clock. All data outputs pass through
output registers controlled by the rising edge of the clock.
Maximum access delay from the clock rise (t
CO
) is 2.6 ns
(250-MHz device).
The CY7C1339G supports secondary cache in systems
utilizing either a linear or interleaved burst sequence. The
interleaved burst order supports Pentium and i486
TM
processors. The linear burst sequence is suited for processors
that utilize a linear burst sequence. The burst order is user
selectable, and is determined by sampling the MODE input.
Accesses can be initiated with either the Processor Address
Strobe (ADSP) or the Controller Address Strobe (ADSC).
Address advancement through the burst sequence is
controlled by the ADV input. A two-bit on-chip wraparound
burst counter captures the first address in a burst sequence
and automatically increments the address for the rest of the
burst access.
Byte Write operations are qualified with the Byte Write Enable
(BWE) and Byte Write Select (BW
[A:D]
) inputs. A Global Write
Enable (GW) overrides all Byte Write inputs and writes data to
all four bytes. All writes are simplified with on-chip
synchronous self-timed Write circuitry.
Three synchronous Chip Selects (CE
1
, CE
2
, CE
3
) and an
asynchronous Output Enable (OE) provide for easy bank
selection and output tri-state control. ADSP is ignored if CE
1
is HIGH.
Single Read Accesses
This access is initiated when the following conditions are
satisfied at clock rise: (1) ADSP or ADSC is asserted LOW, (2)
CE
1
, CE
2
, CE
3
are all asserted active, and (3) the Write
signals (GW, BWE) are all deserted HIGH. ADSP is ignored if
CE
1
is HIGH. The address presented to the address inputs (A)
is stored into the address advancement logic and the Address
Register while being presented to the memory array. The
corresponding data is allowed to propagate to the input of the
Output Registers. At the rising edge of the next clock the data
is allowed to propagate through the output register and onto
the data bus within 2.6 ns (250-MHz device) if OE is active
LOW. The only exception occurs when the SRAM is emerging
from a deselected state to a selected state, its outputs are
always tri-stated during the first cycle of the access. After the
first cycle of the access, the outputs are controlled by the OE
signal. Consecutive single Read cycles are supported. Once
the SRAM is deselected at clock rise by the chip select and
either ADSP or ADSC signals, its output will tri-state immedi-
ately.
Single Write Accesses Initiated by ADSP
This access is initiated when both of the following conditions
are satisfied at clock rise: (1) ADSP is asserted LOW, and
(2) CE
1
, CE
2
, CE
3
are all asserted active. The address
presented to A is loaded into the address register and the
ADV
Input-
Synchronous
Advance Input signal, sampled on the rising edge of CLK, active LOW. When asserted, it
automatically increments the address in a burst cycle.
ADSP
Input-
Synchronous
Address Strobe from Processor, sampled on the rising edge of CLK, active LOW. When
asserted LOW, addresses presented to the device are captured in the address registers. A1, A0
are also loaded into the burst counter. When ADSP and ADSC are both asserted, only ADSP is
recognized. ASDP is ignored when CE
1
is deasserted HIGH.
ADSC
Input-
Synchronous
Address Strobe from Controller, sampled on the rising edge of CLK, active LOW. When
asserted LOW, addresses presented to the device are captured in the address registers. A1, A0
are also loaded into the burst counter. When ADSP and ADSC are both asserted, only ADSP is
recognized.
ZZ
Input-
Asynchronous
ZZ "sleep" Input, active HIGH. When asserted HIGH places the device in a non-time-critical
"sleep" condition with data integrity preserved. For normal operation, this pin has to be LOW or
left floating. ZZ pin has an internal pull-down.
DQs
I/O-
Synchronous
Bidirectional Data I/O lines. As inputs, they feed into an on-chip data register that is triggered
by the rising edge of CLK. As outputs, they deliver the data contained in the memory location
specified by the addresses presented during the previous clock rise of the read cycle. The direction
of the pins is controlled by OE. When OE is asserted LOW, the pins behave as outputs. When
HIGH, DQs are placed in a tri-state condition.
V
DD
Power Supply Power supply inputs to the core of the device.
V
SS
Ground
Ground for the core of the device.
V
DDQ
I/O Power
Supply
Power supply for the I/O circuitry.
V
SSQ
I/O Ground
Ground for the I/O circuitry.
MODE
Input-
Static
Selects Burst Order. When tied to GND selects linear burst sequence. When tied to V
DD
or left
floating selects interleaved burst sequence. This is a strap pin and should remain static during
device operation. Mode Pin has an internal pull-up.
NC
No Connects. Not internally connected to the die
Pin Definitions
(continued)
Name
I/O
Description
PRELIMINARY
CY7C1339G
Document #: 38-05520 Rev. *A
Page 5 of 17
address advancement logic while being delivered to the
memory array. The Write signals (GW, BWE, and BW
[A:D]
) and
ADV inputs are ignored during this first cycle.
ADSP-triggered Write accesses require two clock cycles to
complete. If GW is asserted LOW on the second clock rise, the
data presented to the DQs inputs is written into the corre-
sponding address location in the memory array. If GW is HIGH,
then the Write operation is controlled by BWE and BW
[A:D]
signals. The CY7C1339G provides Byte Write capability that
is described in the Write Cycle Descriptions table. Asserting
the Byte Write Enable input (BWE) with the selected Byte
Write (BW
[A:D]
) input, will selectively write to only the desired
bytes. Bytes not selected during a Byte Write operation will
remain unaltered. A synchronous self-timed Write mechanism
has been provided to simplify the Write operations.
Because the CY7C1339G is a common I/O device, the Output
Enable (OE) must be deserted HIGH before presenting data
to the DQs inputs. Doing so will tri-state the output drivers. As
a safety precaution, DQs are automatically tri-stated whenever
a Write cycle is detected, regardless of the state of OE.
Single Write Accesses Initiated by ADSC
ADSC Write accesses are initiated when the following condi-
tions are satisfied: (1) ADSC is asserted LOW, (2) ADSP is
deserted HIGH, (3) CE
1
, CE
2
, CE
3
are all asserted active, and
(4) the appropriate combination of the Write inputs (GW, BWE,
and BW
[A:D]
) are asserted active to conduct a Write to the
desired byte(s). ADSC-triggered Write accesses require a
single clock cycle to complete. The address presented to A is
loaded into the address register and the address
advancement logic while being delivered to the memory array.
The ADV input is ignored during this cycle. If a global Write is
conducted, the data presented to the DQs is written into the
corresponding address location in the memory core. If a Byte
Write is conducted, only the selected bytes are written. Bytes
not selected during a Byte Write operation will remain
unaltered. A synchronous self-timed Write mechanism has
been provided to simplify the Write operations.
Because the CY7C1339G is a common I/O device, the Output
Enable (OE) must be deserted HIGH before presenting data
to the DQs inputs. Doing so will tri-state the output drivers. As
a safety precaution, DQs are automatically tri-stated whenever
a Write cycle is detected, regardless of the state of OE.
Burst Sequences
The CY7C1339G provides a two-bit wraparound counter, fed
by A1, A0, that implements either an interleaved or linear burst
sequence. The interleaved burst sequence is designed specif-
ically to support Intel Pentium applications. The linear burst
sequence is designed to support processors that follow a
linear burst sequence. The burst sequence is user selectable
through the MODE input.
Asserting ADV LOW at clock rise will automatically increment
the burst counter to the next address in the burst sequence.
Both Read and Write burst operations are supported.
Sleep Mode
The ZZ input pin is an asynchronous input. Asserting ZZ
places the SRAM in a power conservation "sleep" mode. Two
clock cycles are required to enter into or exit from this "sleep"
mode. While in this mode, data integrity is guaranteed.
Accesses pending when entering the "sleep" mode are not
considered valid nor is the completion of the operation
guaranteed. The device must be deselected prior to entering
the "sleep" mode. CE
1
, CE
2
, CE
3
, ADSP, and ADSC must
remain inactive for the duration of t
ZZREC
after the ZZ input
returns LOW.
Interleaved Burst Address Table
(MODE = Floating or V
DD
)
First
Address
A1, A0
Second
Address
A1, A0
Third
Address
A1, A0
Fourth
Address
A1, A0
00
01
10
11
01
00
11
10
10
11
00
01
11
10
01
00
Linear Burst Address Table (MODE = GND)
First
Address
A1, A0
Second
Address
A1, A0
Third
Address
A1, A0
Fourth
Address
A1, A0
00
01
10
11
01
10
11
00
10
11
00
01
11
00
01
10
ZZ Mode Electrical Characteristics
Parameter
Description
Test Conditions
Min.
Max.
Unit
I
DDZZ
Snooze mode standby current
ZZ > V
DD
­ 0.2V
40
mA
t
ZZS
Device operation to ZZ
ZZ > V
DD
­ 0.2V
2t
CYC
ns
t
ZZREC
ZZ recovery time
ZZ < 0.2V
2t
CYC
ns
t
ZZI
ZZ active to snooze current
This parameter is sampled
2t
CYC
ns
t
RZZI
ZZ Inactive to exit snooze current
This parameter is sampled
0
ns